{"doi":"10.1007/978-3-7091-1526-8_8","type":"book_chapter","page":"143 - 170","_id":"1806","scopus_import":1,"publication":"Auxin and Its Role in Plant Development","language":[{"iso":"eng"}],"publication_status":"published","author":[{"last_name":"Baster","first_name":"Pawel","id":"3028BD74-F248-11E8-B48F-1D18A9856A87","full_name":"Baster, Pawel"},{"id":"4159519E-F248-11E8-B48F-1D18A9856A87","full_name":"Friml, Jiří","last_name":"Friml","orcid":"0000-0002-8302-7596","first_name":"Jiří"}],"date_created":"2018-12-11T11:54:07Z","status":"public","date_updated":"2021-01-12T06:53:19Z","publist_id":"5304","abstract":[{"text":"The generation of asymmetry, at both cellular and tissue level, is one of the most essential capabilities of all eukaryotic organisms. It mediates basically all multicellular development ranging from embryogenesis and de novo organ formation till responses to various environmental stimuli. In plants, the awe-inspiring number of such processes is regulated by phytohormone auxin and its directional, cell-to-cell transport. The mediators of this transport, PIN auxin transporters, are asymmetrically localized at the plasma membrane, and this polar localization determines the directionality of intercellular auxin flow. Thus, auxin transport contributes crucially to the generation of local auxin gradients or maxima, which instruct given cell to change its developmental program. Here, we introduce and discuss the molecular components and cellular mechanisms regulating the generation and maintenance of cellular PIN polarity, as the general hallmarks of cell polarity in plants.","lang":"eng"}],"oa_version":"None","year":"2014","month":"04","user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","department":[{"_id":"JiFr"}],"editor":[{"full_name":"Zažímalová, Eva","first_name":"Eva","last_name":"Zažímalová"},{"first_name":"Jan","last_name":"Petrášek","full_name":"Petrášek, Jan"},{"id":"38F4F166-F248-11E8-B48F-1D18A9856A87","full_name":"Benková, Eva","last_name":"Benková","orcid":"0000-0002-8510-9739","first_name":"Eva"}],"publisher":"Springer","day":"01","title":"Auxin on the road navigated by cellular PIN polarity","quality_controlled":"1","citation":{"mla":"Baster, Pawel, and Jiří Friml. “Auxin on the Road Navigated by Cellular PIN Polarity.” Auxin and Its Role in Plant Development, edited by Eva Zažímalová et al., Springer, 2014, pp. 143–70, doi:10.1007/978-3-7091-1526-8_8.","short":"P. Baster, J. Friml, in:, E. Zažímalová, J. Petrášek, E. Benková (Eds.), Auxin and Its Role in Plant Development, Springer, 2014, pp. 143–170.","ama":"Baster P, Friml J. Auxin on the road navigated by cellular PIN polarity. In: Zažímalová E, Petrášek J, Benková E, eds. Auxin and Its Role in Plant Development. Springer; 2014:143-170. doi:10.1007/978-3-7091-1526-8_8","ieee":"P. Baster and J. Friml, “Auxin on the road navigated by cellular PIN polarity,” in Auxin and Its Role in Plant Development, E. Zažímalová, J. Petrášek, and E. Benková, Eds. Springer, 2014, pp. 143–170.","chicago":"Baster, Pawel, and Jiří Friml. “Auxin on the Road Navigated by Cellular PIN Polarity.” In Auxin and Its Role in Plant Development, edited by Eva Zažímalová, Jan Petrášek, and Eva Benková, 143–70. Springer, 2014. https://doi.org/10.1007/978-3-7091-1526-8_8.","ista":"Baster P, Friml J. 2014.Auxin on the road navigated by cellular PIN polarity. In: Auxin and Its Role in Plant Development. , 143–170.","apa":"Baster, P., & Friml, J. (2014). Auxin on the road navigated by cellular PIN polarity. In E. Zažímalová, J. Petrášek, & E. Benková (Eds.), Auxin and Its Role in Plant Development (pp. 143–170). Springer. https://doi.org/10.1007/978-3-7091-1526-8_8"},"date_published":"2014-04-01T00:00:00Z"}