Multifunctional devices and logic gates with undoped silicon nanowires

Mongillo M, Spathis P, Katsaros G, Gentile P, De Franceschi S. 2012. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Letters. 12(6), 3074–3079.


Journal Article | Published
Author
Mongillo, Massimo; Spathis, Panayotis N; Katsaros, GeorgiosISTA; Gentile, Pascal; De Franceschi, Silvano
Abstract
We report on the electronic transport properties of multiple-gate devices fabricated from undoped silicon nanowires. Understanding and control of the relevant transport mechanisms was achieved by means of local electrostatic gating and temperature-dependent measurements. The roles of the source/drain contacts and of the silicon channel could be independently evaluated and tuned. Wrap gates surrounding the silicide-silicon contact interfaces were proved to be effective in inducing a full suppression of the contact Schottky barriers, thereby enabling carrier injection down to liquid helium temperature. By independently tuning the effective Schottky barrier heights, a variety of reconfigurable device functionalities could be obtained. In particular, the same nanowire device could be configured to work as a Schottky barrier transistor, a Schottky diode, or a p-n diode with tunable polarities. This versatility was eventually exploited to realize a NAND logic gate with gain well above one.
Publishing Year
Date Published
2012-06-13
Journal Title
Nano Letters
Acknowledgement
This work was supported by the Agence Nationale de la Recherche (ANR) through the ACCESS and COHESION projects and by the European Commission through the Chemtronics program MEST-CT-2005-020513
Volume
12
Issue
6
Page
3074 - 3079
IST-REx-ID

Cite this

Mongillo M, Spathis P, Katsaros G, Gentile P, De Franceschi S. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Letters. 2012;12(6):3074-3079. doi:10.1021/nl300930m
Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., & De Franceschi, S. (2012). Multifunctional devices and logic gates with undoped silicon nanowires. Nano Letters. American Chemical Society. https://doi.org/10.1021/nl300930m
Mongillo, Massimo, Panayotis Spathis, Georgios Katsaros, Pascal Gentile, and Silvano De Franceschi. “Multifunctional Devices and Logic Gates with Undoped Silicon Nanowires.” Nano Letters. American Chemical Society, 2012. https://doi.org/10.1021/nl300930m.
M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi, “Multifunctional devices and logic gates with undoped silicon nanowires,” Nano Letters, vol. 12, no. 6. American Chemical Society, pp. 3074–3079, 2012.
Mongillo M, Spathis P, Katsaros G, Gentile P, De Franceschi S. 2012. Multifunctional devices and logic gates with undoped silicon nanowires. Nano Letters. 12(6), 3074–3079.
Mongillo, Massimo, et al. “Multifunctional Devices and Logic Gates with Undoped Silicon Nanowires.” Nano Letters, vol. 12, no. 6, American Chemical Society, 2012, pp. 3074–79, doi:10.1021/nl300930m.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar