--- _id: '1699' abstract: - lang: eng text: By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range. acknowledgement: This work was made possible with financial support by the Vienna Science and Technology Fund (WWTF), by the Deutsche Forschungsgemeinschaft (DFG), Research Unit 1078 Natural selection in structured populations, by the Austrian Science Fund (FWF) via funding for the Vienna Graduate School for Population Genetics, and by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for UNESCO and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Derek full_name: Setter, Derek last_name: Setter - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Setter D, Hermisson J. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 2015;70(7):1523-1580. doi:10.1007/s00285-014-0802-y apa: Uecker, H., Setter, D., & Hermisson, J. (2015). Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. Springer. https://doi.org/10.1007/s00285-014-0802-y chicago: Uecker, Hildegard, Derek Setter, and Joachim Hermisson. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology. Springer, 2015. https://doi.org/10.1007/s00285-014-0802-y. ieee: H. Uecker, D. Setter, and J. Hermisson, “Adaptive gene introgression after secondary contact,” Journal of Mathematical Biology, vol. 70, no. 7. Springer, pp. 1523–1580, 2015. ista: Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580. mla: Uecker, Hildegard, et al. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology, vol. 70, no. 7, Springer, 2015, pp. 1523–80, doi:10.1007/s00285-014-0802-y. short: H. Uecker, D. Setter, J. Hermisson, Journal of Mathematical Biology 70 (2015) 1523–1580. date_created: 2018-12-11T11:53:32Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:10:36Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1007/s00285-014-0802-y file: - access_level: open_access checksum: 00e3a67bda05d4cc165b3a48b41ef9ad content_type: application/pdf creator: system date_created: 2018-12-12T10:14:27Z date_updated: 2020-07-14T12:45:12Z file_id: '5079' file_name: IST-2016-458-v1+1_s00285-014-0802-y.pdf file_size: 1321527 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 70' issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1523 - 1580 project: - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Journal of Mathematical Biology publication_status: published publisher: Springer publist_id: '5442' pubrep_id: '458' quality_controlled: '1' scopus_import: 1 status: public title: Adaptive gene introgression after secondary contact tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 70 year: '2015' ...