Twisted Linnik implies optimal covering exponent for S3

T.D. Browning, V. Kumaraswamy, R. Steiner, International Mathematics Research Notices (2017).


Journal Article | Published
Author
; ;
Abstract
We show that a twisted variant of Linnik’s conjecture on sums of Kloosterman sums leads to an optimal covering exponent for S3.
Publishing Year
Date Published
2017-06-19
Journal Title
International Mathematics Research Notices
IST-REx-ID

Cite this

Browning TD, Kumaraswamy V, Steiner R. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. 2017. doi:https://doi.org/10.1093/imrn/rnx116
Browning, T. D., Kumaraswamy, V., & Steiner, R. (2017). Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices. https://doi.org/10.1093/imrn/rnx116
Browning, Timothy D, Vinay Kumaraswamy, and Rapael Steiner. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices, 2017. https://doi.org/10.1093/imrn/rnx116.
T. D. Browning, V. Kumaraswamy, and R. Steiner, “Twisted Linnik implies optimal covering exponent for S3,” International Mathematics Research Notices, 2017.
Browning TD, Kumaraswamy V, Steiner R. 2017. Twisted Linnik implies optimal covering exponent for S3. International Mathematics Research Notices.
Browning, Timothy D., et al. “Twisted Linnik Implies Optimal Covering Exponent for S3.” International Mathematics Research Notices, Oxford University Press, 2017, doi:https://doi.org/10.1093/imrn/rnx116.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar