Mutations driving CLL and their evolution in progression and relapse

D. Landau, E. Tausch, A. Taylor Weiner, C. Stewart, J. Reiter, J. Bahlo, S. Kluth, I. Božić, M. Lawrence, S. Böttcher, S. Carter, K. Cibulskis, D. Mertens, C. Sougnez, M. Rosenberg, J. Hess, J. Edelmann, S. Kless, M. Kneba, M. Ritgen, A. Fink, K. Fischer, S. Gabriel, E. Lander, M. Nowak, H. Döhner, M. Hallek, D. Neuberg, G. Getz, S. Stilgenbauer, C. Wu, Nature 526 (2015) 525–530.


Journal Article | Published | English

Scopus indexed
Author
Landau, Dan; Tausch, Eugen; Taylor Weiner, Amaro; Stewart, Chip; Reiter, JohannesIST Austria ; Bahlo, Jasmin; Kluth, Sandra; Božić, Ivana; Lawrence, Michael; Böttcher, Sebastian; Carter, Scott; Cibulskis, Kristian
All
Department
Abstract
Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver events, and their impact on disease relapse and clinical outcome.
Publishing Year
Date Published
2015-10-22
Journal Title
Nature
Volume
526
Issue
7574
Page
525 - 530
IST-REx-ID

Cite this

Landau D, Tausch E, Taylor Weiner A, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525-530. doi:10.1038/nature15395
Landau, D., Tausch, E., Taylor Weiner, A., Stewart, C., Reiter, J., Bahlo, J., … Wu, C. (2015). Mutations driving CLL and their evolution in progression and relapse. Nature, 526(7574), 525–530. https://doi.org/10.1038/nature15395
Landau, Dan, Eugen Tausch, Amaro Taylor Weiner, Chip Stewart, Johannes Reiter, Jasmin Bahlo, Sandra Kluth, et al. “Mutations Driving CLL and Their Evolution in Progression and Relapse.” Nature 526, no. 7574 (2015): 525–30. https://doi.org/10.1038/nature15395.
D. Landau et al., “Mutations driving CLL and their evolution in progression and relapse,” Nature, vol. 526, no. 7574, pp. 525–530, 2015.
Landau D, Tausch E, Taylor Weiner A, Stewart C, Reiter J, Bahlo J, Kluth S, Božić I, Lawrence M, Böttcher S, Carter S, Cibulskis K, Mertens D, Sougnez C, Rosenberg M, Hess J, Edelmann J, Kless S, Kneba M, Ritgen M, Fink A, Fischer K, Gabriel S, Lander E, Nowak M, Döhner H, Hallek M, Neuberg D, Getz G, Stilgenbauer S, Wu C. 2015. Mutations driving CLL and their evolution in progression and relapse. Nature. 526(7574), 525–530.
Landau, Dan, et al. “Mutations Driving CLL and Their Evolution in Progression and Relapse.” Nature, vol. 526, no. 7574, Nature Publishing Group, 2015, pp. 525–30, doi:10.1038/nature15395.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

PMID: 26466571
PubMed | Europe PMC

Search this title in

Google Scholar