CSP for binary conservative relational structures

A. Kazda, Algebra Universalis 75 (2016) 75–84.


Journal Article | Published | English
Department
Abstract
We prove that whenever A is a 3-conservative relational structure with only binary and unary relations,then the algebra of polymorphisms of A either has no Taylor operation (i.e.,CSP(A)is NP-complete),or it generates an SD(∧) variety (i.e.,CSP(A)has bounded width).
Publishing Year
Date Published
2016-02-01
Journal Title
Algebra Universalis
Volume
75
Issue
1
Page
75 - 84
IST-REx-ID

Cite this

Kazda A. CSP for binary conservative relational structures. Algebra Universalis. 2016;75(1):75-84. doi:10.1007/s00012-015-0358-8
Kazda, A. (2016). CSP for binary conservative relational structures. Algebra Universalis, 75(1), 75–84. https://doi.org/10.1007/s00012-015-0358-8
Kazda, Alexandr. “CSP for Binary Conservative Relational Structures.” Algebra Universalis 75, no. 1 (2016): 75–84. https://doi.org/10.1007/s00012-015-0358-8.
A. Kazda, “CSP for binary conservative relational structures,” Algebra Universalis, vol. 75, no. 1, pp. 75–84, 2016.
Kazda A. 2016. CSP for binary conservative relational structures. Algebra Universalis. 75(1), 75–84.
Kazda, Alexandr. “CSP for Binary Conservative Relational Structures.” Algebra Universalis, vol. 75, no. 1, Springer, 2016, pp. 75–84, doi:10.1007/s00012-015-0358-8.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar