Phat - Persistent homology algorithms toolbox

U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, Journal of Symbolic Computation 78 (2017) 76–90.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
; ; ;
Department
Abstract
Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.
Publishing Year
Date Published
2017-01-01
Journal Title
Journal of Symbolic Computation
Volume
78
Page
76 - 90
ISSN
IST-REx-ID

Cite this

Bauer U, Kerber M, Reininghaus J, Wagner H. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 2017;78:76-90. doi:10.1016/j.jsc.2016.03.008
Bauer, U., Kerber, M., Reininghaus, J., & Wagner, H. (2017). Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation, 78, 76–90. https://doi.org/10.1016/j.jsc.2016.03.008
Bauer, Ulrich, Michael Kerber, Jan Reininghaus, and Hubert Wagner. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation 78 (2017): 76–90. https://doi.org/10.1016/j.jsc.2016.03.008.
U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat - Persistent homology algorithms toolbox,” Journal of Symbolic Computation, vol. 78, pp. 76–90, 2017.
Bauer U, Kerber M, Reininghaus J, Wagner H. 2017. Phat - Persistent homology algorithms toolbox. Journal of Symbolic Computation. 78, 76–90.
Bauer, Ulrich, et al. “Phat - Persistent Homology Algorithms Toolbox.” Journal of Symbolic Computation, vol. 78, Academic Press, 2017, pp. 76–90, doi:10.1016/j.jsc.2016.03.008.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar