Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks

R.K. Mishra, S. Kim, J. Guzmán, P.M. Jonas, Nature Communications 7 (2016).

Download
OA 4.51 MB

Journal Article | Published | English
Department
Abstract
CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order. The STDP curve is symmetric and broad (half-width ~150 ms). Consistent with these STDP induction properties, AP–EPSP sequences lead to supralinear summation of spine [Ca2+] transients. Furthermore, afterdepolarizations (ADPs) following APs efficiently propagate into dendrites of CA3 pyramidal neurons, and EPSPs summate with dendritic ADPs. In autoassociative network models, storage and recall are more robust with symmetric than with asymmetric STDP rules. Thus, a specialized STDP induction rule allows reliable storage and recall of information in the hippocampal CA3 network.
Publishing Year
Date Published
2016-05-13
Journal Title
Nature Communications
Acknowledgement
We thank Jozsef Csicsvari and Nelson Spruston for critically reading the manuscript. We also thank A. Schlögl for programming, F. Marr for technical assistance and E. Kramberger for manuscript editing.
Volume
7
Article Number
11552
IST-REx-ID

Cite this

Mishra RK, Kim S, Guzmán J, Jonas PM. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications. 2016;7. doi:10.1038/ncomms11552
Mishra, R. K., Kim, S., Guzmán, J., & Jonas, P. M. (2016). Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications, 7. https://doi.org/10.1038/ncomms11552
Mishra, Rajiv Kumar, Sooyun Kim, José Guzmán, and Peter M Jonas. “Symmetric Spike Timing-Dependent Plasticity at CA3–CA3 Synapses Optimizes Storage and Recall in Autoassociative Networks.” Nature Communications 7 (2016). https://doi.org/10.1038/ncomms11552.
R. K. Mishra, S. Kim, J. Guzmán, and P. M. Jonas, “Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks,” Nature Communications, vol. 7, 2016.
Mishra RK, Kim S, Guzmán J, Jonas PM. 2016. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications. 7.
Mishra, Rajiv Kumar, et al. “Symmetric Spike Timing-Dependent Plasticity at CA3–CA3 Synapses Optimizes Storage and Recall in Autoassociative Networks.” Nature Communications, vol. 7, 11552, Nature Publishing Group, 2016, doi:10.1038/ncomms11552.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-12T10:18:33Z


Material in IST:
Dissertation containing IST record

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar