Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games

M. Svoreňová, J. Kretinsky, M. Chmelik, K. Chatterjee, I. Cěrná, C. Belta, Nonlinear Analysis: Hybrid Systems 23 (2017) 230–253.


Journal Article | Published | English
Author
; ; ; ; ;
Abstract
We consider the problem of computing the set of initial states of a dynamical system such that there exists a control strategy to ensure that the trajectories satisfy a temporal logic specification with probability 1 (almost-surely). We focus on discrete-time, stochastic linear dynamics and specifications given as formulas of the Generalized Reactivity(1) fragment of Linear Temporal Logic over linear predicates in the states of the system. We propose a solution based on iterative abstraction-refinement, and turn-based 2-player probabilistic games. While the theoretical guarantee of our algorithm after any finite number of iterations is only a partial solution, we show that if our algorithm terminates, then the result is the set of all satisfying initial states. Moreover, for any (partial) solution our algorithm synthesizes witness control strategies to ensure almost-sure satisfaction of the temporal logic specification. While the proposed algorithm guarantees progress and soundness in every iteration, it is computationally demanding. We offer an alternative, more efficient solution for the reachability properties that decomposes the problem into a series of smaller problems of the same type. All algorithms are demonstrated on an illustrative case study.
Publishing Year
Date Published
2017-02-01
Journal Title
Nonlinear Analysis: Hybrid Systems
Volume
23
Issue
2
Page
230 - 253
IST-REx-ID

Cite this

Svoreňová M, Kretinsky J, Chmelik M, Chatterjee K, Cěrná I, Belta C. Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games. Nonlinear Analysis: Hybrid Systems. 2017;23(2):230-253. doi:10.1016/j.nahs.2016.04.006
Svoreňová, M., Kretinsky, J., Chmelik, M., Chatterjee, K., Cěrná, I., & Belta, C. (2017). Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games. Nonlinear Analysis: Hybrid Systems, 23(2), 230–253. https://doi.org/10.1016/j.nahs.2016.04.006
Svoreňová, Mária, Jan Kretinsky, Martin Chmelik, Krishnendu Chatterjee, Ivana Cěrná, and Cǎlin Belta. “Temporal Logic Control for Stochastic Linear Systems Using Abstraction Refinement of Probabilistic Games.” Nonlinear Analysis: Hybrid Systems 23, no. 2 (2017): 230–53. https://doi.org/10.1016/j.nahs.2016.04.006.
M. Svoreňová, J. Kretinsky, M. Chmelik, K. Chatterjee, I. Cěrná, and C. Belta, “Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games,” Nonlinear Analysis: Hybrid Systems, vol. 23, no. 2, pp. 230–253, 2017.
Svoreňová M, Kretinsky J, Chmelik M, Chatterjee K, Cěrná I, Belta C. 2017. Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games. Nonlinear Analysis: Hybrid Systems. 23(2), 230–253.
Svoreňová, Mária, et al. “Temporal Logic Control for Stochastic Linear Systems Using Abstraction Refinement of Probabilistic Games.” Nonlinear Analysis: Hybrid Systems, vol. 23, no. 2, Elsevier, 2017, pp. 230–53, doi:10.1016/j.nahs.2016.04.006.

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data IST Research Explorer

Sources

arXiv 1410.5387

Search this title in

Google Scholar