--- _id: '1396' abstract: - lang: eng text: CA3 pyramidal neurons are thought to pay a key role in memory storage and pattern completion by activity-dependent synaptic plasticity between CA3-CA3 recurrent excitatory synapses. To examine the induction rules of synaptic plasticity at CA3-CA3 synapses, we performed whole-cell patch-clamp recordings in acute hippocampal slices from rats (postnatal 21-24 days) at room temperature. Compound excitatory postsynaptic potentials (ESPSs) were recorded by tract stimulation in stratum oriens in the presence of 10 µM gabazine. High-frequency stimulation (HFS) induced N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Although LTP by HFS did not requier postsynaptic spikes, it was blocked by Na+-channel blockers suggesting that local active processes (e.g.) dendritic spikes) may contribute to LTP induction without requirement of a somatic action potential (AP). We next examined the properties of spike timing-dependent plasticity (STDP) at CA3-CA3 synapses. Unexpectedly, low-frequency pairing of EPSPs and backpropagated action potentialy (bAPs) induced LTP, independent of temporal order. The STDP curve was symmetric and broad, with a half-width of ~150 ms. Consistent with these specific STDP induction properties, post-presynaptic sequences led to a supralinear summation of spine [Ca2+] transients. Furthermore, in autoassociative network models, storage and recall was substantially more robust with symmetric than with asymmetric STDP rules. In conclusion, we found associative forms of LTP at CA3-CA3 recurrent collateral synapses with distinct induction rules. LTP induced by HFS may be associated with dendritic spikes. In contrast, low frequency pairing of pre- and postsynaptic activity induced LTP only if EPSP-AP were temporally very close. Together, these induction mechanisms of synaptiic plasticity may contribute to memory storage in the CA3-CA3 microcircuit at different ranges of activity. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rajiv Kumar full_name: Mishra, Rajiv Kumar id: 46CB58F2-F248-11E8-B48F-1D18A9856A87 last_name: Mishra citation: ama: Mishra RK. Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. 2016. apa: Mishra, R. K. (2016). Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. Institute of Science and Technology Austria. chicago: Mishra, Rajiv Kumar. “Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus.” Institute of Science and Technology Austria, 2016. ieee: R. K. Mishra, “Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus,” Institute of Science and Technology Austria, 2016. ista: Mishra RK. 2016. Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus. Institute of Science and Technology Austria. mla: Mishra, Rajiv Kumar. Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus. Institute of Science and Technology Austria, 2016. short: R.K. Mishra, Synaptic Plasticity Rules at CA3-CA3 Recurrent Synapses in Hippocampus, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:51:46Z date_published: 2016-03-01T00:00:00Z date_updated: 2023-09-07T11:55:26Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: PeJo file: - access_level: closed checksum: 5a010a838faf040f7064f3cfb802f743 content_type: application/pdf creator: dernst date_created: 2019-08-09T12:14:46Z date_updated: 2020-07-14T12:44:48Z file_id: '6782' file_name: Thesis_Mishra_Rajiv (Final).pdf file_size: 2407572 relation: main_file - access_level: open_access checksum: 81b26d9ede92c99f1d8cc6fa1d04cbbb content_type: application/pdf creator: dernst date_created: 2021-02-22T11:48:44Z date_updated: 2021-02-22T11:48:44Z file_id: '9183' file_name: 2016_RajivMishra_Thesis.pdf file_size: 2407572 relation: main_file success: 1 file_date_updated: 2021-02-22T11:48:44Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '83' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5811' related_material: record: - id: '1432' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ...