Tunable directional photon scattering from a pair of superconducting qubits

Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998.

Download
OA 2023_NaturePhysics_Redchenko.pdf 1.65 MB

Journal Article | Published | English

Scopus indexed
Author
Redchenko, ElenaISTA; Poshakinskiy, Alexander V.; Sett, RiyaISTA; Zemlicka, MartinISTA; Poddubny, Alexander N.; Fink, Johannes MISTA
Department
Abstract
The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality.
Publishing Year
Date Published
2023-05-24
Journal Title
Nature Communications
Acknowledgement
The authors thank W.D. Oliver for discussions, L. Drmic and P. Zielinski for software development, and the MIBA workshop and the IST nanofabrication facility for technical support. This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105) and IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. and M.Z. acknowledge support from the European Research Council under grant agreement No 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. The work of A.N.P. and A.V.P. has been supported by the Russian Science Foundation under the grant No 20-12-00194.
Volume
14
Article Number
2998
eISSN
IST-REx-ID

Cite this

Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 2023;14. doi:10.1038/s41467-023-38761-6
Redchenko, E., Poshakinskiy, A. V., Sett, R., Zemlicka, M., Poddubny, A. N., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38761-6
Redchenko, Elena, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38761-6.
E. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits,” Nature Communications, vol. 14. Springer Nature, 2023.
Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998.
Redchenko, Elena, et al. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications, vol. 14, 2998, Springer Nature, 2023, doi:10.1038/s41467-023-38761-6.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-06-06
MD5 Checksum
a857df40f0882859c48a1ff1e2001ec2


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2205.03293

Search this title in

Google Scholar