Computation of cubical Steenrod squares

M. Krcál, P. Pilarczyk, in:, Springer, 2016, pp. 140–151.

No fulltext has been uploaded. References only!

Conference Paper | Published | English

Scopus indexed
Series Title
Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package []. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.
Publishing Year
Date Published
The research conducted by both authors has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreements no. 291734 (for M. K.) and no. 622033 (for P. P.).
140 - 151
CTIC: Computational Topology in Image Context
Conference Location
Marseille, France
Conference Date
2016-06-15 – 2016-06-17

Cite this

Krcál M, Pilarczyk P. Computation of cubical Steenrod squares. In: Vol 9667. Springer; 2016:140-151. doi:10.1007/978-3-319-39441-1_13
Krcál, M., & Pilarczyk, P. (2016). Computation of cubical Steenrod squares (Vol. 9667, pp. 140–151). Presented at the CTIC: Computational Topology in Image Context, Marseille, France: Springer.
Krcál, Marek, and Pawel Pilarczyk. “Computation of Cubical Steenrod Squares,” 9667:140–51. Springer, 2016.
M. Krcál and P. Pilarczyk, “Computation of cubical Steenrod squares,” presented at the CTIC: Computational Topology in Image Context, Marseille, France, 2016, vol. 9667, pp. 140–151.
Krcál M, Pilarczyk P. 2016. Computation of cubical Steenrod squares. CTIC: Computational Topology in Image Context, LNCS, vol. 9667, 140–151.
Krcál, Marek, and Pawel Pilarczyk. Computation of Cubical Steenrod Squares. Vol. 9667, Springer, 2016, pp. 140–51, doi:10.1007/978-3-319-39441-1_13.


Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar