The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans

Daiß JL, Pilsl M, Straub K, Bleckmann A, Höcherl M, Heiss FB, Abascal-Palacios G, Ramsay EP, Tluckova K, Mars J-C, Fürtges T, Bruckmann A, Rudack T, Bernecky C, Lamour V, Panov K, Vannini A, Moss T, Engel C. 2022. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Science Alliance. 5(11), e202201568.

Download
OA 2022_LifeScienceAlliance_Daiss.pdf 3.18 MB

Journal Article | Published | English
Author
Daiß, Julia L; Pilsl, Michael; Straub, Kristina; Bleckmann, Andrea; Höcherl, Mona; Heiss, Florian B; Abascal-Palacios, Guillermo; Ramsay, Ewan P; Tluckova, KatarinaISTA; Mars, Jean-Clement; Fürtges, Torben; Bruckmann, Astrid
All
Department
Abstract
Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.
Publishing Year
Date Published
2022-09-01
Journal Title
Life Science Alliance
Acknowledgement
The authors especially thank Philip Gunkel for his contribution. We thank all past and present members of the Engel lab, Achim Griesenbeck, Colyn Crane- Robinson, Christophe Lotz, Marlene Vayssieres, Klaus Grasser, Herbert Tschochner, and Philipp Milkereit for help and discussion; Gerhard Lehmann and Nobert Eichner for IT support; Joost Zomerdijk for UBF-constructs, Volker Cordes for the Hela P2 cell line; Remco Sprangers for shared cell culture; Dina Grohmann and the Archaea Center for fermentation; and Thomas Dresselhaus for access to fluorescence microscopes. This work was in part supported by the Emmy-Noether Programm (DFG grant no. EN 1204/1-1 to C Engel) of the German Research Council and Collaborative Research Center 960 (TP-A8 to C Engel).
Volume
5
Issue
11
Article Number
e202201568
ISSN
IST-REx-ID

Cite this

Daiß JL, Pilsl M, Straub K, et al. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Science Alliance. 2022;5(11). doi:10.26508/lsa.202201568
Daiß, J. L., Pilsl, M., Straub, K., Bleckmann, A., Höcherl, M., Heiss, F. B., … Engel, C. (2022). The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Science Alliance. Life Science Alliance. https://doi.org/10.26508/lsa.202201568
Daiß, Julia L, Michael Pilsl, Kristina Straub, Andrea Bleckmann, Mona Höcherl, Florian B Heiss, Guillermo Abascal-Palacios, et al. “The Human RNA Polymerase I Structure Reveals an HMG-like Docking Domain Specific to Metazoans.” Life Science Alliance. Life Science Alliance, 2022. https://doi.org/10.26508/lsa.202201568.
J. L. Daiß et al., “The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans,” Life Science Alliance, vol. 5, no. 11. Life Science Alliance, 2022.
Daiß JL, Pilsl M, Straub K, Bleckmann A, Höcherl M, Heiss FB, Abascal-Palacios G, Ramsay EP, Tluckova K, Mars J-C, Fürtges T, Bruckmann A, Rudack T, Bernecky C, Lamour V, Panov K, Vannini A, Moss T, Engel C. 2022. The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans. Life Science Alliance. 5(11), e202201568.
Daiß, Julia L., et al. “The Human RNA Polymerase I Structure Reveals an HMG-like Docking Domain Specific to Metazoans.” Life Science Alliance, vol. 5, no. 11, e202201568, Life Science Alliance, 2022, doi:10.26508/lsa.202201568.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-09-08
MD5 Checksum
4201d876a3e5e8b65e319d03300014ad


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar