Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms

M. Wysokiński, J. Kaczmarczyk, Journal of Physics: Condensed Matter 29 (2017).

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English
Author
;
Department
Abstract
We investigate the effect of the electron-hole (e-h) symmetry breaking on d-wave superconductivity induced by non-local effects of correlations in the generalized Hubbard model. The symmetry breaking is introduced in a two-fold manner: by the next-to-nearest neighbor hopping of electrons and by the charge-bond interaction - the off-diagonal term of the Coulomb potential. Both terms lead to a pronounced asymmetry of the superconducting order parameter. The next-to-nearest neighbor hopping enhances superconductivity for h-doping, while diminishes it for e-doping. The charge-bond interaction alone leads to the opposite effect and, additionally, to the kinetic-energy gain upon condensation in the underdoped regime. With both terms included, with similar amplitudes, the height of the superconducting dome and the critical doping remain in favor of h-doping. The influence of the charge-bond interaction on deviations from symmetry of the shape of the gap at the Fermi surface in the momentum space is briefly discussed.
Publishing Year
Date Published
2017-01-16
Journal Title
Journal of Physics: Condensed Matter
Volume
29
Issue
8
Article Number
085604
ISSN
IST-REx-ID

Cite this

Wysokiński M, Kaczmarczyk J. Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter. 2017;29(8). doi:10.1088/1361-648X/aa532f
Wysokiński, M., & Kaczmarczyk, J. (2017). Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter, 29(8). https://doi.org/10.1088/1361-648X/aa532f
Wysokiński, Marcin, and Jan Kaczmarczyk. “Unconventional Superconductivity in Generalized Hubbard Model Role of Electron–Hole Symmetry Breaking Terms.” Journal of Physics: Condensed Matter 29, no. 8 (2017). https://doi.org/10.1088/1361-648X/aa532f.
M. Wysokiński and J. Kaczmarczyk, “Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms,” Journal of Physics: Condensed Matter, vol. 29, no. 8, 2017.
Wysokiński M, Kaczmarczyk J. 2017. Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter. 29(8).
Wysokiński, Marcin, and Jan Kaczmarczyk. “Unconventional Superconductivity in Generalized Hubbard Model Role of Electron–Hole Symmetry Breaking Terms.” Journal of Physics: Condensed Matter, vol. 29, no. 8, 085604, IOP Publishing Ltd., 2017, doi:10.1088/1361-648X/aa532f.

Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar