Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams

Agustí J, Minoguchi Y, Fink JM, Rabl P. 2022. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 105(6), 062454.


Journal Article | Published | English

Scopus indexed
Author
Agustí, J.; Minoguchi, Y.; Fink, Johannes MISTA ; Rabl, P.
Department
Abstract
We investigate the deterministic generation and distribution of entanglement in large quantum networks by driving distant qubits with the output fields of a nondegenerate parametric amplifier. In this setting, the amplifier produces a continuous Gaussian two-mode squeezed state, which acts as a quantum-correlated reservoir for the qubits and relaxes them into a highly entangled steady state. Here we are interested in the maximal amount of entanglement and the optimal entanglement generation rates that can be achieved with this scheme under realistic conditions taking, in particular, the finite amplifier bandwidth, waveguide losses, and propagation delays into account. By combining exact numerical simulations of the full network with approximate analytic results, we predict the optimal working point for the amplifier and the corresponding qubit-qubit entanglement under various conditions. Our findings show that this passive conversion of Gaussian into discrete-variable entanglement offers a robust and experimentally very attractive approach for operating large optical, microwave, or hybrid quantum networks, for which efficient parametric amplifiers are currently developed.
Publishing Year
Date Published
2022-06-29
Journal Title
Physical Review A
Acknowledgement
We thank T. Mavrogordatos and D. Zhu for initial contribution on the presented topic and K. Fedorov for stimulating discussions on entangled microwave beams. This work was supported by the Austrian Science Fund (FWF) through Grant No. P32299 (PHONED) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 899354 (SuperQuLAN). Most of the computational results presented were obtained using the CLIP cluster [65].
Volume
105
Issue
6
Article Number
062454
ISSN
eISSN
IST-REx-ID

Cite this

Agustí J, Minoguchi Y, Fink JM, Rabl P. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 2022;105(6). doi:10.1103/PhysRevA.105.062454
Agustí, J., Minoguchi, Y., Fink, J. M., & Rabl, P. (2022). Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.105.062454
Agustí, J., Y. Minoguchi, Johannes M Fink, and P. Rabl. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A. American Physical Society, 2022. https://doi.org/10.1103/PhysRevA.105.062454.
J. Agustí, Y. Minoguchi, J. M. Fink, and P. Rabl, “Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams,” Physical Review A, vol. 105, no. 6. American Physical Society, 2022.
Agustí J, Minoguchi Y, Fink JM, Rabl P. 2022. Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A. 105(6), 062454.
Agustí, J., et al. “Long-Distance Distribution of Qubit-Qubit Entanglement Using Gaussian-Correlated Photonic Beams.” Physical Review A, vol. 105, no. 6, 062454, American Physical Society, 2022, doi:10.1103/PhysRevA.105.062454.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2204.02993

Search this title in

Google Scholar