The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass

Khostovan AA, Sobral D, Mobasher B, Best PN, Smail I, Matthee JJ, Darvish B, Nayyeri H, Hemmati S, Stott JP. 2018. The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass. Monthly Notices of the Royal Astronomical Society. 478(3), 2999–3015.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Khostovan, A A; Sobral, D; Mobasher, B; Best, P N; Smail, I; Matthee, Jorryt JISTA ; Darvish, B; Nayyeri, H; Hemmati, S; Stott, J P
Abstract
We investigate the clustering properties of ∼7000 H β + [O III] and [O II] narrowband-selected emitters at z ∼ 0.8–4.7 from the High-z Emission Line Survey. We find clustering lengths, r0, of 1.5–4.0 h−1 Mpc and minimum dark matter halo masses of 1010.7–12.1 M⊙ for our z = 0.8–3.2 H β + [O III] emitters and r0 ∼ 2.0–8.3 h−1 Mpc and halo masses of 1011.5–12.6 M⊙ for our z = 1.5–4.7 [O II] emitters. We find r0 to strongly increase both with increasing line luminosity and redshift. By taking into account the evolution of the characteristic line luminosity, L⋆(z), and using our model predictions of halo mass given r0, we find a strong, redshift-independent increasing trend between L/L⋆(z) and minimum halo mass. The faintest H β + [O III] emitters are found to reside in 109.5 M⊙ haloes and the brightest emitters in 1013.0 M⊙ haloes. For [O II] emitters, the faintest emitters are found in 1010.5 M⊙ haloes and the brightest emitters in 1012.6 M⊙ haloes. A redshift-independent stellar mass dependency is also observed where the halo mass increases from 1011 to 1012.5 M⊙ for stellar masses of 108.5 to 1011.5 M⊙, respectively. We investigate the interdependencies of these trends by repeating our analysis in a Lline−Mstar grid space for our most populated samples (H β + [O III] z = 0.84 and [O II] z = 1.47) and find that the line luminosity dependency is stronger than the stellar mass dependency on halo mass. For L > L⋆ emitters at all epochs, we find a relatively flat trend with halo masses of 1012.5–13 M⊙, which may be due to quenching mechanisms in massive haloes that is consistent with a transitional halo mass predicted by models.
Publishing Year
Date Published
2018-08-01
Journal Title
Monthly Notices of the Royal Astronomical Society
Acknowledgement
We thank the anonymous referee for their useful comments and suggestions that improved this study. AAK thanks Anahita Alavi and Irene Shivaei for useful discussion in the making of this paper. AAK acknowledges that this work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program – Grant NNX16AO92H. DS acknowledges financial support from the Netherlands Organization for Scientific Research (NWO) through a Veni fellowship and from Lancaster University through an Early Career Internal Grant A100679. PNB is grateful for support from STFC via grant STM001229/1. IRS acknowledges support from STFC (ST/L00075X/1), the ERC Advanced Grant DUSTYGAL (321334), and a Royal Society/Wolfson Merit award. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. BD acknowledges financial support from NASA through the Astrophysics Data Analysis Program (ADAP), grant number NNX12AE20G.
Volume
478
Issue
3
Page
2999-3015
ISSN
eISSN
IST-REx-ID

Cite this

Khostovan AA, Sobral D, Mobasher B, et al. The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass. Monthly Notices of the Royal Astronomical Society. 2018;478(3):2999-3015. doi:10.1093/mnras/sty925
Khostovan, A. A., Sobral, D., Mobasher, B., Best, P. N., Smail, I., Matthee, J. J., … Stott, J. P. (2018). The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/sty925
Khostovan, A A, D Sobral, B Mobasher, P N Best, I Smail, Jorryt J Matthee, B Darvish, H Nayyeri, S Hemmati, and J P Stott. “The Clustering of H β + [O III] and [O II] Emitters since z ∼ 5: Dependencies with Line Luminosity and Stellar Mass.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2018. https://doi.org/10.1093/mnras/sty925.
A. A. Khostovan et al., “The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass,” Monthly Notices of the Royal Astronomical Society, vol. 478, no. 3. Oxford University Press, pp. 2999–3015, 2018.
Khostovan AA, Sobral D, Mobasher B, Best PN, Smail I, Matthee JJ, Darvish B, Nayyeri H, Hemmati S, Stott JP. 2018. The clustering of H β + [O III] and [O II] emitters since z ∼ 5: Dependencies with line luminosity and stellar mass. Monthly Notices of the Royal Astronomical Society. 478(3), 2999–3015.
Khostovan, A. A., et al. “The Clustering of H β + [O III] and [O II] Emitters since z ∼ 5: Dependencies with Line Luminosity and Stellar Mass.” Monthly Notices of the Royal Astronomical Society, vol. 478, no. 3, Oxford University Press, 2018, pp. 2999–3015, doi:10.1093/mnras/sty925.

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1705.01101

Search this title in

Google Scholar