@article{11333, abstract = {Adenosine triphosphate (ATP) is the energy source for various biochemical processes and biomolecular motors in living things. Development of ATP antagonists and their stimuli-controlled actions offer a novel approach to regulate biological processes. Herein, we developed azobenzene-based photoswitchable ATP antagonists for controlling the activity of motor proteins; cytoplasmic and axonemal dyneins. The new ATP antagonists showed reversible photoswitching of cytoplasmic dynein activity in an in vitro dynein-microtubule system due to the trans and cis photoisomerization of their azobenzene segment. Importantly, our ATP antagonists reversibly regulated the axonemal dynein motor activity for the force generation in a demembranated model of Chlamydomonas reinhardtii. We found that the trans and cis isomers of ATP antagonists significantly differ in their affinity to the ATP binding site.}, author = {Thayyil, Sampreeth and Nishigami, Yukinori and Islam, Muhammad J and Hashim, P. K. and Furuta, Ken'Ya and Oiwa, Kazuhiro and Yu, Jian and Yao, Min and Nakagaki, Toshiyuki and Tamaoki, Nobuyuki}, issn = {15213765}, journal = {Chemistry - A European Journal}, number = {30}, publisher = {Wiley}, title = {{Dynamic control of microbial movement by photoswitchable ATP antagonists}}, doi = {10.1002/chem.202200807}, volume = {28}, year = {2022}, }