Multiplexed computations in retinal ganglion cells of a single type

S. Deny, U. Ferrari, E. Mace, P. Yger, R. Caplette, S. Picaud, G. Tkacik, O. Marre, Nature Communications 8 (2017).

Download
OA 2.87 MB

Journal Article | Published | English
Author
; ; ; ; ; ; ;
Department
Abstract
In the early visual system, cells of the same type perform the same computation in different places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of a single-type extract a single-stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale recordings in the rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously encodes two radically different features of a visual scene. Cells close to a moving object code quasilinearly for its position, while distant cells remain largely invariant to the object's position and, instead, respond nonlinearly to changes in the object's speed. We develop a quantitative model that accounts for this effect and identify a disinhibitory circuit that mediates it. Ganglion cells of a single type thus do not code for one, but two features simultaneously. This richer, flexible neural map might also be present in other sensory systems.
Publishing Year
Date Published
2017-12-06
Journal Title
Nature Communications
Volume
8
Issue
1
Article Number
1964
ISSN
IST-REx-ID

Cite this

Deny S, Ferrari U, Mace E, et al. Multiplexed computations in retinal ganglion cells of a single type. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-02159-y
Deny, S., Ferrari, U., Mace, E., Yger, P., Caplette, R., Picaud, S., … Marre, O. (2017). Multiplexed computations in retinal ganglion cells of a single type. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02159-y
Deny, Stephane, Ulisse Ferrari, Emilie Mace, Pierre Yger, Romain Caplette, Serge Picaud, Gasper Tkacik, and Olivier Marre. “Multiplexed Computations in Retinal Ganglion Cells of a Single Type.” Nature Communications 8, no. 1 (2017). https://doi.org/10.1038/s41467-017-02159-y.
S. Deny et al., “Multiplexed computations in retinal ganglion cells of a single type,” Nature Communications, vol. 8, no. 1, 2017.
Deny S, Ferrari U, Mace E, Yger P, Caplette R, Picaud S, Tkacik G, Marre O. 2017. Multiplexed computations in retinal ganglion cells of a single type. Nature Communications. 8(1).
Deny, Stephane, et al. “Multiplexed Computations in Retinal Ganglion Cells of a Single Type.” Nature Communications, vol. 8, no. 1, 1964, Nature Publishing Group, 2017, doi:10.1038/s41467-017-02159-y.
All files available under the following license(s):
Creative Commons License:
CC-BYCreative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2018-12-12T10:16:06Z


Export

Marked Publications

Open Data IST Research Explorer

Search this title in

Google Scholar