{"language":[{"iso":"eng"}],"year":"2014","volume":8318,"publisher":"Springer Nature","day":"30","external_id":{"arxiv":["1311.3238"]},"publication_status":"published","page":"78-97","acknowledgement":" Supported by Austrian Science Fund (FWF) Grant No P23499-N23, FWF NFN Grant No\r\nS11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.","doi":"10.1007/978-3-642-54013-4_5","_id":"10885","publication":"VMCAI 2014: Verification, Model Checking, and Abstract Interpretation","date_updated":"2023-02-23T12:52:24Z","conference":{"location":"San Diego, CA, United States","start_date":"2014-01-19","end_date":"2014-01-21","name":"VMCAI: Verifcation, Model Checking, and Abstract Interpretation"},"oa_version":"Preprint","date_created":"2022-03-18T13:03:15Z","date_published":"2014-01-30T00:00:00Z","article_processing_charge":"No","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","type":"conference","publication_identifier":{"eisbn":["9783642540134"],"isbn":["9783642540127"],"issn":["0302-9743"],"eissn":["1611-3349"]},"month":"01","status":"public","ec_funded":1,"title":"Doomsday equilibria for omega-regular games","alternative_title":["LNCS"],"department":[{"_id":"KrCh"}],"author":[{"orcid":"0000-0002-4561-241X","id":"2E5DCA20-F248-11E8-B48F-1D18A9856A87","first_name":"Krishnendu","last_name":"Chatterjee","full_name":"Chatterjee, Krishnendu"},{"last_name":"Doyen","full_name":"Doyen, Laurent","first_name":"Laurent"},{"last_name":"Filiot","full_name":"Filiot, Emmanuel","first_name":"Emmanuel"},{"full_name":"Raskin, Jean-François","last_name":"Raskin","first_name":"Jean-François"}],"citation":{"ama":"Chatterjee K, Doyen L, Filiot E, Raskin J-F. Doomsday equilibria for omega-regular games. In: VMCAI 2014: Verification, Model Checking, and Abstract Interpretation. Vol 8318. Springer Nature; 2014:78-97. doi:10.1007/978-3-642-54013-4_5","short":"K. Chatterjee, L. Doyen, E. Filiot, J.-F. Raskin, in:, VMCAI 2014: Verification, Model Checking, and Abstract Interpretation, Springer Nature, 2014, pp. 78–97.","ista":"Chatterjee K, Doyen L, Filiot E, Raskin J-F. 2014. Doomsday equilibria for omega-regular games. VMCAI 2014: Verification, Model Checking, and Abstract Interpretation. VMCAI: Verifcation, Model Checking, and Abstract Interpretation, LNCS, vol. 8318, 78–97.","apa":"Chatterjee, K., Doyen, L., Filiot, E., & Raskin, J.-F. (2014). Doomsday equilibria for omega-regular games. In VMCAI 2014: Verification, Model Checking, and Abstract Interpretation (Vol. 8318, pp. 78–97). San Diego, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-642-54013-4_5","mla":"Chatterjee, Krishnendu, et al. “Doomsday Equilibria for Omega-Regular Games.” VMCAI 2014: Verification, Model Checking, and Abstract Interpretation, vol. 8318, Springer Nature, 2014, pp. 78–97, doi:10.1007/978-3-642-54013-4_5.","ieee":"K. Chatterjee, L. Doyen, E. Filiot, and J.-F. Raskin, “Doomsday equilibria for omega-regular games,” in VMCAI 2014: Verification, Model Checking, and Abstract Interpretation, San Diego, CA, United States, 2014, vol. 8318, pp. 78–97.","chicago":"Chatterjee, Krishnendu, Laurent Doyen, Emmanuel Filiot, and Jean-François Raskin. “Doomsday Equilibria for Omega-Regular Games.” In VMCAI 2014: Verification, Model Checking, and Abstract Interpretation, 8318:78–97. Springer Nature, 2014. https://doi.org/10.1007/978-3-642-54013-4_5."},"intvolume":" 8318","abstract":[{"text":"Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information games.\r\nIn this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile such that all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players objective, then the objective of every player is violated.\r\nWe present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games.We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.","lang":"eng"}],"project":[{"name":"Modern Graph Algorithmic Techniques in Formal Verification","call_identifier":"FWF","grant_number":"P 23499-N23","_id":"2584A770-B435-11E9-9278-68D0E5697425"},{"call_identifier":"FWF","name":"Game Theory","_id":"25863FF4-B435-11E9-9278-68D0E5697425","grant_number":"S11407"},{"grant_number":"279307","_id":"2581B60A-B435-11E9-9278-68D0E5697425","name":"Quantitative Graph Games: Theory and Applications","call_identifier":"FP7"},{"_id":"2587B514-B435-11E9-9278-68D0E5697425","name":"Microsoft Research Faculty Fellowship"}],"quality_controlled":"1","scopus_import":"1","related_material":{"record":[{"id":"681","status":"public","relation":"later_version"}]}}