--- _id: '10826' abstract: - lang: eng text: Animals that lose one sensory modality often show augmented responses to other sensory inputs. The mechanisms underpinning this cross-modal plasticity are poorly understood. We probe such mechanisms by performing a forward genetic screen for mutants with enhanced O2 perception in Caenorhabditis elegans. Multiple mutants exhibiting increased O2 responsiveness concomitantly show defects in other sensory responses. One mutant, qui-1, defective in a conserved NACHT/WD40 protein, abolishes pheromone-evoked Ca2+ responses in the ADL pheromone-sensing neurons. At the same time, ADL responsiveness to pre-synaptic input from O2-sensing neurons is heightened in qui-1, and other sensory defective mutants, resulting in enhanced neurosecretion although not increased Ca2+ responses. Expressing qui-1 selectively in ADL rescues both the qui-1 ADL neurosecretory phenotype and enhanced escape from 21% O2. Profiling ADL neurons in qui-1 mutants highlights extensive changes in gene expression, notably of many neuropeptide receptors. We show that elevated ADL expression of the conserved neuropeptide receptor NPR-22 is necessary for enhanced ADL neurosecretion in qui-1 mutants, and is sufficient to confer increased ADL neurosecretion in control animals. Sensory loss can thus confer cross-modal plasticity by changing the peptidergic connectome. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: ScienComp acknowledgement: "We would like to thank Gemma Chandratillake and Merav Cohen for identifying mutants and José David Moñino Sánchez for his help on neurosecretion assays. We are grateful to Kaveh Ashrafi (UCSF), Piali Sengupta (Brandeis), and the Caenorhabditis Genetic Center (funded by National Institutes of Health Infrastructure Program P40 OD010440) for strains and reagents ... and Rebecca Butcher (Univ. Florida) for C9 pheromone. We thank Tim Stevens, Paula Freire-Pritchett, Alastair Crisp, GurpreetGhattaoraya, and Fabian Amman for help with bioinformatic analysis, Ekaterina Lashmanova for help with injections, Iris Hardege for strains, and Isabel Beets (KU Leuven) and members of the de Bono Lab for comments on the manuscript. We thank the CRUK Cambridge Research Institute Genomics Core for next generation sequencing and the Flow Cytometry Facility at LMB for FACS. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Bioimaging Facility (BIF), the Life Science Facility (LSF) and Scientific Computing (SciCo-p– Bioinformatics).\r\nThis work was supported by the Medical Research Council UK (Studentship to GV), an\r\nAdvanced ERC grant (269,058 ACMO to MdB), and a Wellcome Investigator Award (209504/Z/17/Z to MdB)." article_number: e68040 article_processing_charge: No article_type: original author: - first_name: Giulio full_name: Valperga, Giulio id: 67F289DE-0D8F-11EA-9BDD-54AE3DDC885E last_name: Valperga - first_name: Mario full_name: De Bono, Mario id: 4E3FF80E-F248-11E8-B48F-1D18A9856A87 last_name: De Bono orcid: 0000-0001-8347-0443 citation: ama: Valperga G, de Bono M. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans. eLife. 2022;11. doi:10.7554/eLife.68040 apa: Valperga, G., & de Bono, M. (2022). Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.68040 chicago: Valperga, Giulio, and Mario de Bono. “Impairing One Sensory Modality Enhances Another by Reconfiguring Peptidergic Signalling in Caenorhabditis Elegans.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/eLife.68040. ieee: G. Valperga and M. de Bono, “Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Valperga G, de Bono M. 2022. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans. eLife. 11, e68040. mla: Valperga, Giulio, and Mario de Bono. “Impairing One Sensory Modality Enhances Another by Reconfiguring Peptidergic Signalling in Caenorhabditis Elegans.” ELife, vol. 11, e68040, eLife Sciences Publications, 2022, doi:10.7554/eLife.68040. short: G. Valperga, M. de Bono, ELife 11 (2022). date_created: 2022-03-06T23:01:52Z date_published: 2022-02-24T00:00:00Z date_updated: 2023-08-02T14:42:55Z day: '24' ddc: - '570' department: - _id: MaDe doi: 10.7554/eLife.68040 external_id: isi: - '000763432300001' pmid: - '35201977' file: - access_level: open_access checksum: cc1b9bf866d0f61f965556e0dd03d3ac content_type: application/pdf creator: dernst date_created: 2022-03-07T07:39:25Z date_updated: 2022-03-07T07:39:25Z file_id: '10830' file_name: 2022_eLife_Valperga.pdf file_size: 4095591 relation: main_file success: 1 file_date_updated: 2022-03-07T07:39:25Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 23870BE8-32DE-11EA-91FC-C7463DDC885E grant_number: 209504/A/17/Z name: Molecular mechanisms of neural circuit function publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ...