Conditionally optimal algorithms for generalized Büchi Games
LIPIcs
Chatterjee, Krishnendu
Dvorák, Wolfgang
Henzinger, Monika
Loitzenbauer, Veronika
ddc:000
ddc:004
ddc:006
Games on graphs provide the appropriate framework to study several central problems in computer science, such as verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or Büchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized Büchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized Büchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with n vertices, m edges, and generalized Büchi objectives with k conjunctions. First, we present an algorithm with running time O(k*n^2), improving the previously known O(k*n*m) and O(k^2*n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k_1 conjunctions in the antecedent and k_2 conjunctions in the consequent, and present an O(k_1 k_2 n^{2.5})-time algorithm, improving the previously known O(k_1*k_2*n*m)-time algorithm for m > n^{1.5}.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2016
info:eu-repo/semantics/conferenceObject
doc-type:conferenceObject
text
http://purl.org/coar/resource_type/c_5794
https://research-explorer.app.ist.ac.at/record/1068
https://research-explorer.app.ist.ac.at/download/1068/5187
Chatterjee K, Dvorák W, Henzinger M, Loitzenbauer V. Conditionally optimal algorithms for generalized Büchi Games. In: Vol 58. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2016. doi:<a href="https://doi.org/10.4230/LIPIcs.MFCS.2016.25">10.4230/LIPIcs.MFCS.2016.25</a>
eng
info:eu-repo/semantics/altIdentifier/doi/10.4230/LIPIcs.MFCS.2016.25
info:eu-repo/grantAgreement/FWF//ICT15-003
info:eu-repo/grantAgreement/FWF//S 11407_N23
info:eu-repo/grantAgreement/EC/FP7/279307
info:eu-repo/semantics/openAccess