Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico

Harker-Kirschneck L, Baum B, Šarić A. 2019. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. 17(1), 82.

Download
OA 2019_BMCBio_Harker_Kirschneck.pdf 1.65 MB

Journal Article | Published | English

Scopus indexed
Author
Harker-Kirschneck, Lena; Baum, Buzz; Šarić, AnđelaISTA
Abstract
Background ESCRT-III is a membrane remodelling filament with the unique ability to cut membranes from the inside of the membrane neck. It is essential for the final stage of cell division, the formation of vesicles, the release of viruses, and membrane repair. Distinct from other cytoskeletal filaments, ESCRT-III filaments do not consume energy themselves, but work in conjunction with another ATP-consuming complex. Despite rapid progress in describing the cell biology of ESCRT-III, we lack an understanding of the physical mechanisms behind its force production and membrane remodelling. Results Here we present a minimal coarse-grained model that captures all the experimentally reported cases of ESCRT-III driven membrane sculpting, including the formation of downward and upward cones and tubules. This model suggests that a change in the geometry of membrane bound ESCRT-III filaments—from a flat spiral to a 3D helix—drives membrane deformation. We then show that such repetitive filament geometry transitions can induce the fission of cargo-containing vesicles. Conclusions Our model provides a general physical mechanism that explains the full range of ESCRT-III-dependent membrane remodelling and scission events observed in cells. This mechanism for filament force production is distinct from the mechanisms described for other cytoskeletal elements discovered so far. The mechanistic principles revealed here suggest new ways of manipulating ESCRT-III-driven processes in cells and could be used to guide the engineering of synthetic membrane-sculpting systems.
Keywords
Publishing Year
Date Published
2019-10-22
Journal Title
BMC Biology
Acknowledgement
We thank Jeremy Carlton, Mike Staddon, Geraint Harker, and the Wellcome Trust Consortium “Archaeal Origins of Eukaryotic Cell Organisation” for fruitful conversations. We thank Peter Wirnsberger and Tine Curk for discussions about the membrane model implementation.
Volume
17
Issue
1
Article Number
82
ISSN
IST-REx-ID

Cite this

Harker-Kirschneck L, Baum B, Šarić A. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. 2019;17(1). doi:10.1186/s12915-019-0700-2
Harker-Kirschneck, L., Baum, B., & Šarić, A. (2019). Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. Springer Nature. https://doi.org/10.1186/s12915-019-0700-2
Harker-Kirschneck, Lena, Buzz Baum, and Anđela Šarić. “Changes in ESCRT-III Filament Geometry Drive Membrane Remodelling and Fission in Silico.” BMC Biology. Springer Nature, 2019. https://doi.org/10.1186/s12915-019-0700-2.
L. Harker-Kirschneck, B. Baum, and A. Šarić, “Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico,” BMC Biology, vol. 17, no. 1. Springer Nature, 2019.
Harker-Kirschneck L, Baum B, Šarić A. 2019. Changes in ESCRT-III filament geometry drive membrane remodelling and fission in silico. BMC Biology. 17(1), 82.
Harker-Kirschneck, Lena, et al. “Changes in ESCRT-III Filament Geometry Drive Membrane Remodelling and Fission in Silico.” BMC Biology, vol. 17, no. 1, 82, Springer Nature, 2019, doi:10.1186/s12915-019-0700-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-11-26
MD5 Checksum
31d8bae55a376d30925f53f7e1a02396


Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 31640700
PubMed | Europe PMC

Search this title in

Google Scholar