Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas

Martín-Sánchez J, Duan J, Taboada-Gutiérrez J, Álvarez-Pérez G, Voronin KV, Prieto Gonzalez I, Ma W, Bao Q, Volkov VS, Hillenbrand R, Nikitin AY, Alonso-González P. 2021. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances. 7(41), abj0127.

Download
OA 2021_ScienceAdv_Martin-Sanchez.pdf 2.44 MB

Journal Article | Published | English

Scopus indexed
Author
Martín-Sánchez, Javier; Duan, Jiahua; Taboada-Gutiérrez, Javier; Álvarez-Pérez, Gonzalo; Voronin, Kirill V.; Prieto Gonzalez, IvanISTA ; Ma, Weiliang; Bao, Qiaoliang; Volkov, Valentyn S.; Hillenbrand, Rainer; Nikitin, Alexey Y.; Alonso-González, Pablo
All
Abstract
Phonon polaritons (PhPs)—light coupled to lattice vibrations—with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.
Publishing Year
Date Published
2021-10-08
Journal Title
Science Advances
Acknowledgement
J.M.-S. acknowledges financial support from the Ramón y Cajal Program of the Government of Spain and FSE (RYC2018-026196-I) and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-110308GA-I00). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA, and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00). J.T.-G. acknowledges support through the Severo Ochoa Program from the Government of the Principality of Asturias (PA-18-PF-BP17-126). G.A.-P. acknowledges support through the Severo Ochoa Program from the Government of the Principality of Asturias (PA-20-PF-BP19-053). K.V.V. and V.S.V. acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-606). A.Y.N. acknowledges the Spanish Ministry of Science, Innovation, and Universities (national projects MAT2017-88358-C3-3-R and PID2020-115221GB-C42) and the Basque Department of Education (PIBA-2020-1-0014). R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation, and Universities (national project number RTI2018-094830-B-100 and project number MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant number IT1164-19).
Volume
7
Issue
41
Article Number
abj0127
eISSN
IST-REx-ID

Cite this

Martín-Sánchez J, Duan J, Taboada-Gutiérrez J, et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances. 2021;7(41). doi:10.1126/sciadv.abj0127
Martín-Sánchez, J., Duan, J., Taboada-Gutiérrez, J., Álvarez-Pérez, G., Voronin, K. V., Prieto Gonzalez, I., … Alonso-González, P. (2021). Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.abj0127
Martín-Sánchez, Javier, Jiahua Duan, Javier Taboada-Gutiérrez, Gonzalo Álvarez-Pérez, Kirill V. Voronin, Ivan Prieto Gonzalez, Weiliang Ma, et al. “Focusing of In-Plane Hyperbolic Polaritons in van Der Waals Crystals with Tailored Infrared Nanoantennas.” Science Advances. American Association for the Advancement of Science, 2021. https://doi.org/10.1126/sciadv.abj0127.
J. Martín-Sánchez et al., “Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas,” Science Advances, vol. 7, no. 41. American Association for the Advancement of Science, 2021.
Martín-Sánchez J, Duan J, Taboada-Gutiérrez J, Álvarez-Pérez G, Voronin KV, Prieto Gonzalez I, Ma W, Bao Q, Volkov VS, Hillenbrand R, Nikitin AY, Alonso-González P. 2021. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances. 7(41), abj0127.
Martín-Sánchez, Javier, et al. “Focusing of In-Plane Hyperbolic Polaritons in van Der Waals Crystals with Tailored Infrared Nanoantennas.” Science Advances, vol. 7, no. 41, abj0127, American Association for the Advancement of Science, 2021, doi:10.1126/sciadv.abj0127.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-10-27
MD5 Checksum
0a470ef6a47d2b8a96ede4c4d28cfacd


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2103.10852

Search this title in

Google Scholar