TY - JOUR
AB - A nonlinear system possesses an invariance with respect to a set of transformations if its output dynamics remain invariant when transforming the input, and adjusting the initial condition accordingly. Most research has focused on invariances with respect to time-independent pointwise transformations like translational-invariance (u(t) -> u(t) + p, p in R) or scale-invariance (u(t) -> pu(t), p in R>0). In this article, we introduce the concept of s0-invariances with respect to continuous input transformations exponentially growing/decaying over time. We show that s0-invariant systems not only encompass linear time-invariant (LTI) systems with transfer functions having an irreducible zero at s0 in R, but also that the input/output relationship of nonlinear s0-invariant systems possesses properties well known from their linear counterparts. Furthermore, we extend the concept of s0-invariances to second- and higher-order s0-invariances, corresponding to invariances with respect to transformations of the time-derivatives of the input, and encompassing LTI systems with zeros of multiplicity two or higher. Finally, we show that nth-order 0-invariant systems realize – under mild conditions – nth-order nonlinear differential operators: when excited by an input of a characteristic functional form, the system’s output converges to a constant value only depending on the nth (nonlinear) derivative of the input.
AU - Lang, Moritz
AU - Sontag, Eduardo
ID - 1007
JF - Automatica
SN - 00051098
TI - Zeros of nonlinear systems with input invariances
VL - 81C
ER -