Persistence and stability of geometric complexes

Project Period: 2016-09-01 – 2020-08-31
Externally Funded
Principal Investigator
Herbert Edelsbrunner
Department(s)
Edelsbrunner Group
Grant Number
I02979-N35
Funding Organisation
FWF

12 Publications

2017 | Journal Article | IST-REx-ID: 718 | OA
Expected sizes of poisson Delaunay mosaics and their discrete Morse functions
H. Edelsbrunner, A. Nikitenko, M. Reitzner, Advances in Applied Probability 49 (2017) 745–767.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2020 | Journal Article | IST-REx-ID: 7554 | OA
Weighted Poisson–Delaunay mosaics
H. Edelsbrunner, A. Nikitenko, Theory of Probability and Its Applications 64 (2020) 595–614.
View | DOI | Download Preprint (ext.) | arXiv
 
2020 | Journal Article | IST-REx-ID: 7666 | OA
Tri-partitions and bases of an ordered complex
H. Edelsbrunner, K. Ölsböck, Discrete and Computational Geometry (2020).
View | DOI | Download Published Version (ext.)
 
2019 | Journal Article | IST-REx-ID: 5678 | OA
Poisson–Delaunay Mosaics of Order k
H. Edelsbrunner, A. Nikitenko, Discrete and Computational Geometry 62 (2019) 865–878.
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 6608 | OA
Holes and dependences in an ordered complex
H. Edelsbrunner, K. Ölsböck, Computer Aided Geometric Design 73 (2019) 1–15.
View | Files available | DOI
 
2019 | Conference Paper | IST-REx-ID: 6648 | OA
Topological data analysis in information space
H. Edelsbrunner, Z. Virk, H. Wagner, in:, 35th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, p. 31:1-31:14.
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 6756 | OA
Unexpected topology of the temperature fluctuations in the cosmic microwave background
P. Pranav, R.J. Adler, T. Buchert, H. Edelsbrunner, B.J.T. Jones, A. Schwartzman, H. Wagner, R. Van De Weygaert, Astronomy and Astrophysics 627 (2019).
View | Files available | DOI | arXiv
 
2018 | Conference Paper | IST-REx-ID: 187 | OA
The multi-cover persistence of Euclidean balls
H. Edelsbrunner, G.F. Osang, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 188 | OA
Smallest enclosing spheres and Chernoff points in Bregman geometry
H. Edelsbrunner, Z. Virk, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13.
View | Files available | DOI
 
2018 | Journal Article | IST-REx-ID: 87 | OA
Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics
H. Edelsbrunner, A. Nikitenko, Annals of Applied Probability 28 (2018) 3215–3238.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 312 | OA
On the optimality of the FCC lattice for soft sphere packing
H. Edelsbrunner, M. Iglesias Ham, SIAM J Discrete Math 32 (2018) 750–782.
View | DOI | Download Submitted Version (ext.)
 
2020 | Conference Paper | IST-REx-ID: 8135 | OA
Radius functions on Poisson–Delaunay mosaics and related complexes experimentally
H. Edelsbrunner, A. Nikitenko, K. Ölsböck, P. Synak, in:, Topological Data Analysis, Springer Nature, 2020, pp. 181–218.
View | Files available | DOI