7 Publications

Mark all

[7]
2022 | Thesis | IST-REx-ID: 10799 | OA
Konstantinov NH. Robustness and fairness in machine learning. 2022. doi:10.15479/at:ista:10799
View | Files available | DOI
 
[6]
2022 | Journal Article | IST-REx-ID: 10802 | OA
Konstantinov NH, Lampert C. Fairness-aware PAC learning from corrupted data. Journal of Machine Learning Research. 2022;23:1-60.
View | Files available | arXiv
 
[5]
2021 | Preprint | IST-REx-ID: 10803 | OA
Konstantinov NH, Lampert C. Fairness through regularization for learning to rank. arXiv.
View | Files available | Download Preprint (ext.) | arXiv
 
[4]
2020 | Conference Paper | IST-REx-ID: 8724 | OA
Konstantinov NH, Frantar E, Alistarh D-A, Lampert C. On the sample complexity of adversarial multi-source PAC learning. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:5416-5425.
View | Files available | arXiv
 
[3]
2019 | Conference Paper | IST-REx-ID: 6590 | OA
Konstantinov NH, Lampert C. Robust learning from untrusted sources. In: Proceedings of the 36th International Conference on Machine Learning. Vol 97. PMLR; 2019:3488-3498.
View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2018 | Conference Paper | IST-REx-ID: 5962 | OA
Alistarh D-A, De Sa C, Konstantinov NH. The convergence of stochastic gradient descent in asynchronous shared memory. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. ACM Press; 2018:169-178. doi:10.1145/3212734.3212763
View | DOI | Download Preprint (ext.) | arXiv
 
[1]
2018 | Conference Paper | IST-REx-ID: 6589 | OA
Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. The convergence of sparsified gradient methods. In: Advances in Neural Information Processing Systems 31. Vol Volume 2018. Neural information processing systems; 2018:5973-5983.
View | Download Preprint (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed

7 Publications

Mark all

[7]
2022 | Thesis | IST-REx-ID: 10799 | OA
Konstantinov NH. Robustness and fairness in machine learning. 2022. doi:10.15479/at:ista:10799
View | Files available | DOI
 
[6]
2022 | Journal Article | IST-REx-ID: 10802 | OA
Konstantinov NH, Lampert C. Fairness-aware PAC learning from corrupted data. Journal of Machine Learning Research. 2022;23:1-60.
View | Files available | arXiv
 
[5]
2021 | Preprint | IST-REx-ID: 10803 | OA
Konstantinov NH, Lampert C. Fairness through regularization for learning to rank. arXiv.
View | Files available | Download Preprint (ext.) | arXiv
 
[4]
2020 | Conference Paper | IST-REx-ID: 8724 | OA
Konstantinov NH, Frantar E, Alistarh D-A, Lampert C. On the sample complexity of adversarial multi-source PAC learning. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:5416-5425.
View | Files available | arXiv
 
[3]
2019 | Conference Paper | IST-REx-ID: 6590 | OA
Konstantinov NH, Lampert C. Robust learning from untrusted sources. In: Proceedings of the 36th International Conference on Machine Learning. Vol 97. PMLR; 2019:3488-3498.
View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2018 | Conference Paper | IST-REx-ID: 5962 | OA
Alistarh D-A, De Sa C, Konstantinov NH. The convergence of stochastic gradient descent in asynchronous shared memory. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. ACM Press; 2018:169-178. doi:10.1145/3212734.3212763
View | DOI | Download Preprint (ext.) | arXiv
 
[1]
2018 | Conference Paper | IST-REx-ID: 6589 | OA
Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. The convergence of sparsified gradient methods. In: Advances in Neural Information Processing Systems 31. Vol Volume 2018. Neural information processing systems; 2018:5973-5983.
View | Download Preprint (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed