38 Publications

Mark all

[38]
2020 | Conference Paper | IST-REx-ID: 7635
Koval N, Sokolova M, Fedorov A, Alistarh D-A, Tsitelov D. 2020. Testing concurrency on the JVM with Lincheck. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP. PPOPP: Principles and Practice of Parallel Programming 423–424.
View | DOI
 
[37]
2020 | Conference Paper | IST-REx-ID: 7605   OA
Alistarh D-A, Fedorov A, Koval N. 2020. In search of the fastest concurrent union-find algorithm. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153. 15.
View | Files available | DOI | arXiv
 
[36]
2020 | Conference Paper | IST-REx-ID: 7636
Brown TA, Prokopec A, Alistarh D-A. 2020. Non-blocking interpolation search trees with doubly-logarithmic running time. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP. PPOPP: Principles and Practice of Parallel Programming 276–291.
View | DOI
 
[35]
2019 | Conference Paper | IST-REx-ID: 6673   OA
Alistarh D-A, Nadiradze G, Koval N. 2019. Efficiency guarantees for parallel incremental algorithms under relaxed schedulers. 31st ACM Symposium on Parallelism in Algorithms and Architectures. SPAA: Symposium on Parallelism in Algorithms and Architectures 145–154.
View | DOI | Download (ext.) | arXiv
 
[34]
2019 | Conference Paper | IST-REx-ID: 7122
Khirirat S, Johansson M, Alistarh D-A. 2019. Gradient compression for communication-limited convex optimization. 2018 IEEE Conference on Decision and Control. CDC: Conference on Decision and Control
View | DOI
 
[33]
2019 | Conference Paper | IST-REx-ID: 7228
Koval N, Alistarh D-A, Elizarov R. 2019. Scalable FIFO channels for programming via communicating sequential processes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11725. 317–333.
View | DOI
 
[32]
2019 | Conference Paper | IST-REx-ID: 7437   OA
Yu C, Tang H, Renggli C, Kassing S, Singla A, Alistarh D-A, Zhang C, Liu J. 2019. Distributed learning over unreliable networks. 36th International Conference on Machine Learning, ICML 2019. ICML: International Conference on Machine Learning vol. 2019–June. 12481–12512.
View | Download (ext.) | arXiv
 
[31]
2019 | Conference Poster | IST-REx-ID: 6485
Koval N, Alistarh D-A, Elizarov R. 2019. Lock-free channels for programming via communicating sequential processes, ACM Press,p.
View | DOI
 
[30]
2019 | Conference Paper | IST-REx-ID: 7201   OA
Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. 2019. SparCML: High-performance sparse communication for machine learning. International Conference for High Performance Computing, Networking, Storage and Analysis, SC. SC: Conference for High Performance Computing, Networking, Storage and Analysis
View | DOI | Download (ext.) | arXiv
 
[29]
2019 | Conference Paper | IST-REx-ID: 6676   OA
Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. 2019. Why extension-based proofs fail. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC: Symposium on Theory of Computing 986–996.
View | DOI | Download (ext.) | arXiv
 
[28]
2019 | Conference Paper | IST-REx-ID: 7542   OA
Wendler C, Alistarh D-A, Püschel M. 2019. Powerset convolutional neural networks. NIPS: Conference on Neural Information Processing Systems vol. 32. 927–938.
View | Download (ext.) | arXiv
 
[27]
2018 | Conference Paper | IST-REx-ID: 5961
Alistarh D-A. 2018. A brief tutorial on distributed and concurrent machine learning. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 487–488.
View | DOI
 
[26]
2018 | Conference Paper | IST-REx-ID: 5966   OA
Alistarh D-A, Haider SK, Kübler R, Nadiradze G. 2018. The transactional conflict problem. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18. SPAA: Symposium on Parallelism in Algorithms and Architectures 383–392.
View | DOI | Download (ext.) | arXiv
 
[25]
2018 | Conference Paper | IST-REx-ID: 6558   OA
Alistarh D-A, Allen-Zhu Z, Li J. 2018. Byzantine Stochastic Gradient Descent. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. Volume 2018. 4613–4623.
View | Download (ext.) | arXiv
 
[24]
2018 | Conference Paper | IST-REx-ID: 6589   OA
Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. 2018. The convergence of sparsified gradient methods. Advances in Neural Information Processing Systems 31. NeurIPS: Conference on Neural Information Processing Systems vol. Volume 2018. 5973–5983.
View | Download (ext.) | arXiv
 
[23]
2018 | Journal Article | IST-REx-ID: 536   OA
Alistarh D-A, Aspnes J, King V, Saia J. 2018. Communication-efficient randomized consensus. Distributed Computing. 31(6), 489–501.
View | Files available | DOI
 
[22]
2018 | Conference Paper | IST-REx-ID: 5962   OA
Alistarh D-A, De Sa C, Konstantinov NH. 2018. The convergence of stochastic gradient descent in asynchronous shared memory. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 169–178.
View | DOI | Download (ext.) | arXiv
 
[21]
2018 | Conference Paper | IST-REx-ID: 7812   OA
Polino A, Pascanu R, Alistarh D-A. 2018. Model compression via distillation and quantization. 6th International Conference on Learning Representations. ICLR: International Conference on Learning Representations
View | Files available | arXiv
 
[20]
2018 | Conference Paper | IST-REx-ID: 5963   OA
Alistarh D-A, Brown TA, Kopinsky J, Nadiradze G. 2018. Relaxed schedulers can efficiently parallelize iterative algorithms. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 377–386.
View | DOI | Download (ext.) | arXiv
 
[19]
2018 | Conference Paper | IST-REx-ID: 6031
Stojanov A, Smith TM, Alistarh D-A, Puschel M. 2018. Fast quantized arithmetic on x86: Trading compute for data movement. 2018 IEEE International Workshop on Signal Processing Systems. SiPS: Workshop on Signal Processing Systems vol. 2018–October.
View | DOI
 
[18]
2018 | Conference Paper | IST-REx-ID: 7116   OA
Grubic D, Tam L, Alistarh D-A, Zhang C. 2018. Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study. Proceedings of the 21st International Conference on Extending Database Technology. EDBT: Conference on Extending Database Technology 145–156.
View | Files available | DOI
 
[17]
2018 | Conference Paper | IST-REx-ID: 7123   OA
Alistarh D-A, Aspnes J, Gelashvili R. 2018. Space-optimal majority in population protocols. Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms 2221–2239.
View | DOI | Download (ext.) | arXiv
 
[16]
2018 | Journal Article | IST-REx-ID: 6001
Alistarh D-A, Leiserson W, Matveev A, Shavit N. 2018. ThreadScan: Automatic and scalable memory reclamation. ACM Transactions on Parallel Computing. 4(4), 18.
View | Files available | DOI
 
[15]
2018 | Conference Paper | IST-REx-ID: 5964   OA
Aksenov V, Alistarh D-A, Kuznetsov P. 2018. Brief Announcement: Performance prediction for coarse-grained locking. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 411–413.
View | DOI | Download (ext.)
 
[14]
2018 | Conference Paper | IST-REx-ID: 5965   OA
Alistarh D-A, Brown TA, Kopinsky J, Li JZ, Nadiradze G. 2018. Distributionally linearizable data structures. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18. SPAA: Symposium on Parallelism in Algorithms and Architectures 133–142.
View | DOI | Download (ext.) | arXiv
 
[13]
2017 | Conference Paper | IST-REx-ID: 787   OA
Alistarh D-A, Aspnes J, Eisenstat D, Rivest R, Gelashvili R. 2017. Time-space trade-offs in population protocols. SODA: Symposium on Discrete Algorithms 2560–2579.
View | DOI | Download (ext.)
 
[12]
2017 | Conference Paper | IST-REx-ID: 788   OA
Alistarh D-A, Dudek B, Kosowski A, Soloveichik D, Uznański P. 2017. Robust detection in leak-prone population protocols. DNA Computing and Molecular Programming, LNCS, vol. 10467 LNCS. 155–171.
View | DOI | Download (ext.)
 
[11]
2017 | Conference Paper | IST-REx-ID: 790
Kara K, Alistarh D-A, Alonso G, Mutlu O, Zhang C. 2017. FPGA-accelerated dense linear machine learning: A precision-convergence trade-off. FCCM: Field-Programmable Custom Computing Machines 160–167.
View | DOI
 
[10]
2017 | Conference Paper | IST-REx-ID: 431   OA
Alistarh D-A, Grubic D, Li J, Tomioka R, Vojnović M. 2017. QSGD: Communication-efficient SGD via gradient quantization and encoding. NIPS: Neural Information Processing System, Advances in Neural Information Processing Systems, vol. 2017. 1710–1721.
View | Download (ext.)
 
[9]
2017 | Conference Paper | IST-REx-ID: 789
Alistarh D-A, Leiserson W, Matveev A, Shavit N. 2017. Forkscan: Conservative memory reclamation for modern operating systems. EuroSys: European Conference on Computer Systems 483–498.
View | DOI
 
[8]
2017 | Conference Paper | IST-REx-ID: 791   OA
Alistarh D-A, Kopinsky J, Li J, Nadiradze G. 2017. The power of choice in priority scheduling. Proceedings of the ACM Symposium on Principles of Distributed Computing. PODC: Principles of Distributed Computing vol. Part F129314. 283–292.
View | DOI | Download (ext.)
 
[7]
2017 | Conference Paper | IST-REx-ID: 432   OA
Zhang H, Li J, Kara K, Alistarh D-A, Liu J, Zhang C. 2017. ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning. Proceedings of Machine Learning Research. ICML: International  Conference  on  Machine Learning, PMLR Press, vol. 70. 4035–4043.
View | Files available
 
[6]
2017 | Conference Paper | IST-REx-ID: 487
Baig G, Radunovic B, Alistarh D-A, Balkwill M, Karagiannis T, Qiu L. 2017. Towards unlicensed cellular networks in TV white spaces. Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies. CoNEXT: Conference on emerging Networking EXperiments and Technologies 2–14.
View | DOI
 
[5]
2016 | Conference Paper | IST-REx-ID: 785
Haider S, Hasenplaugh W, Alistarh D-A. 2016. Lease/Release: Architectural support for scaling contended data structures. PPoPP: Principles and Practice of Parallel Pogramming vol. 12-16-March-2016.
View | DOI
 
[4]
2016 | Journal Article | IST-REx-ID: 786   OA
Alistarh D-A, Censor Hillel K, Shavit N. 2016. Are lock free concurrent algorithms practically wait free . Journal of the ACM. 63(4).
View | DOI | Download (ext.) | arXiv
 
[3]
2015 | Conference Paper | IST-REx-ID: 784
Alistarh D-A, Ballani H, Costa P, Funnell A, Benjamin J, Watts P, Thomsen B. 2015. A high-radix, low-latency optical switch for data centers. SIGCOMM: Special Interest Group on Data Communication 367–368.
View | DOI
 
[2]
2015 | Conference Paper | IST-REx-ID: 778   OA
Alistarh D-A, Kopinsky J, Kuznetsov P, Ravi S, Shavit N. 2015. Inherent limitations of hybrid transactional memory. DISC: Distributed Computing, LNCS, vol. 9363. 185–199.
View | DOI | Download (ext.) | arXiv
 
[1]
2015 | Conference Paper | IST-REx-ID: 780   OA
Alistarh D-A, Gelashvili R. 2015. Polylogarithmic-time leader election in population protocols. ICALP: International Colloquium on Automota, Languages and Programming vol. 9135. 479–491.
View | DOI | Download (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: IST Annual Report

Export / Embed

38 Publications

Mark all

[38]
2020 | Conference Paper | IST-REx-ID: 7635
Koval N, Sokolova M, Fedorov A, Alistarh D-A, Tsitelov D. 2020. Testing concurrency on the JVM with Lincheck. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP. PPOPP: Principles and Practice of Parallel Programming 423–424.
View | DOI
 
[37]
2020 | Conference Paper | IST-REx-ID: 7605   OA
Alistarh D-A, Fedorov A, Koval N. 2020. In search of the fastest concurrent union-find algorithm. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153. 15.
View | Files available | DOI | arXiv
 
[36]
2020 | Conference Paper | IST-REx-ID: 7636
Brown TA, Prokopec A, Alistarh D-A. 2020. Non-blocking interpolation search trees with doubly-logarithmic running time. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP. PPOPP: Principles and Practice of Parallel Programming 276–291.
View | DOI
 
[35]
2019 | Conference Paper | IST-REx-ID: 6673   OA
Alistarh D-A, Nadiradze G, Koval N. 2019. Efficiency guarantees for parallel incremental algorithms under relaxed schedulers. 31st ACM Symposium on Parallelism in Algorithms and Architectures. SPAA: Symposium on Parallelism in Algorithms and Architectures 145–154.
View | DOI | Download (ext.) | arXiv
 
[34]
2019 | Conference Paper | IST-REx-ID: 7122
Khirirat S, Johansson M, Alistarh D-A. 2019. Gradient compression for communication-limited convex optimization. 2018 IEEE Conference on Decision and Control. CDC: Conference on Decision and Control
View | DOI
 
[33]
2019 | Conference Paper | IST-REx-ID: 7228
Koval N, Alistarh D-A, Elizarov R. 2019. Scalable FIFO channels for programming via communicating sequential processes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11725. 317–333.
View | DOI
 
[32]
2019 | Conference Paper | IST-REx-ID: 7437   OA
Yu C, Tang H, Renggli C, Kassing S, Singla A, Alistarh D-A, Zhang C, Liu J. 2019. Distributed learning over unreliable networks. 36th International Conference on Machine Learning, ICML 2019. ICML: International Conference on Machine Learning vol. 2019–June. 12481–12512.
View | Download (ext.) | arXiv
 
[31]
2019 | Conference Poster | IST-REx-ID: 6485
Koval N, Alistarh D-A, Elizarov R. 2019. Lock-free channels for programming via communicating sequential processes, ACM Press,p.
View | DOI
 
[30]
2019 | Conference Paper | IST-REx-ID: 7201   OA
Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. 2019. SparCML: High-performance sparse communication for machine learning. International Conference for High Performance Computing, Networking, Storage and Analysis, SC. SC: Conference for High Performance Computing, Networking, Storage and Analysis
View | DOI | Download (ext.) | arXiv
 
[29]
2019 | Conference Paper | IST-REx-ID: 6676   OA
Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. 2019. Why extension-based proofs fail. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC: Symposium on Theory of Computing 986–996.
View | DOI | Download (ext.) | arXiv
 
[28]
2019 | Conference Paper | IST-REx-ID: 7542   OA
Wendler C, Alistarh D-A, Püschel M. 2019. Powerset convolutional neural networks. NIPS: Conference on Neural Information Processing Systems vol. 32. 927–938.
View | Download (ext.) | arXiv
 
[27]
2018 | Conference Paper | IST-REx-ID: 5961
Alistarh D-A. 2018. A brief tutorial on distributed and concurrent machine learning. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 487–488.
View | DOI
 
[26]
2018 | Conference Paper | IST-REx-ID: 5966   OA
Alistarh D-A, Haider SK, Kübler R, Nadiradze G. 2018. The transactional conflict problem. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18. SPAA: Symposium on Parallelism in Algorithms and Architectures 383–392.
View | DOI | Download (ext.) | arXiv
 
[25]
2018 | Conference Paper | IST-REx-ID: 6558   OA
Alistarh D-A, Allen-Zhu Z, Li J. 2018. Byzantine Stochastic Gradient Descent. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. Volume 2018. 4613–4623.
View | Download (ext.) | arXiv
 
[24]
2018 | Conference Paper | IST-REx-ID: 6589   OA
Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. 2018. The convergence of sparsified gradient methods. Advances in Neural Information Processing Systems 31. NeurIPS: Conference on Neural Information Processing Systems vol. Volume 2018. 5973–5983.
View | Download (ext.) | arXiv
 
[23]
2018 | Journal Article | IST-REx-ID: 536   OA
Alistarh D-A, Aspnes J, King V, Saia J. 2018. Communication-efficient randomized consensus. Distributed Computing. 31(6), 489–501.
View | Files available | DOI
 
[22]
2018 | Conference Paper | IST-REx-ID: 5962   OA
Alistarh D-A, De Sa C, Konstantinov NH. 2018. The convergence of stochastic gradient descent in asynchronous shared memory. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 169–178.
View | DOI | Download (ext.) | arXiv
 
[21]
2018 | Conference Paper | IST-REx-ID: 7812   OA
Polino A, Pascanu R, Alistarh D-A. 2018. Model compression via distillation and quantization. 6th International Conference on Learning Representations. ICLR: International Conference on Learning Representations
View | Files available | arXiv
 
[20]
2018 | Conference Paper | IST-REx-ID: 5963   OA
Alistarh D-A, Brown TA, Kopinsky J, Nadiradze G. 2018. Relaxed schedulers can efficiently parallelize iterative algorithms. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 377–386.
View | DOI | Download (ext.) | arXiv
 
[19]
2018 | Conference Paper | IST-REx-ID: 6031
Stojanov A, Smith TM, Alistarh D-A, Puschel M. 2018. Fast quantized arithmetic on x86: Trading compute for data movement. 2018 IEEE International Workshop on Signal Processing Systems. SiPS: Workshop on Signal Processing Systems vol. 2018–October.
View | DOI
 
[18]
2018 | Conference Paper | IST-REx-ID: 7116   OA
Grubic D, Tam L, Alistarh D-A, Zhang C. 2018. Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study. Proceedings of the 21st International Conference on Extending Database Technology. EDBT: Conference on Extending Database Technology 145–156.
View | Files available | DOI
 
[17]
2018 | Conference Paper | IST-REx-ID: 7123   OA
Alistarh D-A, Aspnes J, Gelashvili R. 2018. Space-optimal majority in population protocols. Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms 2221–2239.
View | DOI | Download (ext.) | arXiv
 
[16]
2018 | Journal Article | IST-REx-ID: 6001
Alistarh D-A, Leiserson W, Matveev A, Shavit N. 2018. ThreadScan: Automatic and scalable memory reclamation. ACM Transactions on Parallel Computing. 4(4), 18.
View | Files available | DOI
 
[15]
2018 | Conference Paper | IST-REx-ID: 5964   OA
Aksenov V, Alistarh D-A, Kuznetsov P. 2018. Brief Announcement: Performance prediction for coarse-grained locking. Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing  - PODC ’18. PODC: Principles of Distributed Computing 411–413.
View | DOI | Download (ext.)
 
[14]
2018 | Conference Paper | IST-REx-ID: 5965   OA
Alistarh D-A, Brown TA, Kopinsky J, Li JZ, Nadiradze G. 2018. Distributionally linearizable data structures. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures  - SPAA ’18. SPAA: Symposium on Parallelism in Algorithms and Architectures 133–142.
View | DOI | Download (ext.) | arXiv
 
[13]
2017 | Conference Paper | IST-REx-ID: 787   OA
Alistarh D-A, Aspnes J, Eisenstat D, Rivest R, Gelashvili R. 2017. Time-space trade-offs in population protocols. SODA: Symposium on Discrete Algorithms 2560–2579.
View | DOI | Download (ext.)
 
[12]
2017 | Conference Paper | IST-REx-ID: 788   OA
Alistarh D-A, Dudek B, Kosowski A, Soloveichik D, Uznański P. 2017. Robust detection in leak-prone population protocols. DNA Computing and Molecular Programming, LNCS, vol. 10467 LNCS. 155–171.
View | DOI | Download (ext.)
 
[11]
2017 | Conference Paper | IST-REx-ID: 790
Kara K, Alistarh D-A, Alonso G, Mutlu O, Zhang C. 2017. FPGA-accelerated dense linear machine learning: A precision-convergence trade-off. FCCM: Field-Programmable Custom Computing Machines 160–167.
View | DOI
 
[10]
2017 | Conference Paper | IST-REx-ID: 431   OA
Alistarh D-A, Grubic D, Li J, Tomioka R, Vojnović M. 2017. QSGD: Communication-efficient SGD via gradient quantization and encoding. NIPS: Neural Information Processing System, Advances in Neural Information Processing Systems, vol. 2017. 1710–1721.
View | Download (ext.)
 
[9]
2017 | Conference Paper | IST-REx-ID: 789
Alistarh D-A, Leiserson W, Matveev A, Shavit N. 2017. Forkscan: Conservative memory reclamation for modern operating systems. EuroSys: European Conference on Computer Systems 483–498.
View | DOI
 
[8]
2017 | Conference Paper | IST-REx-ID: 791   OA
Alistarh D-A, Kopinsky J, Li J, Nadiradze G. 2017. The power of choice in priority scheduling. Proceedings of the ACM Symposium on Principles of Distributed Computing. PODC: Principles of Distributed Computing vol. Part F129314. 283–292.
View | DOI | Download (ext.)
 
[7]
2017 | Conference Paper | IST-REx-ID: 432   OA
Zhang H, Li J, Kara K, Alistarh D-A, Liu J, Zhang C. 2017. ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning. Proceedings of Machine Learning Research. ICML: International  Conference  on  Machine Learning, PMLR Press, vol. 70. 4035–4043.
View | Files available
 
[6]
2017 | Conference Paper | IST-REx-ID: 487
Baig G, Radunovic B, Alistarh D-A, Balkwill M, Karagiannis T, Qiu L. 2017. Towards unlicensed cellular networks in TV white spaces. Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies. CoNEXT: Conference on emerging Networking EXperiments and Technologies 2–14.
View | DOI
 
[5]
2016 | Conference Paper | IST-REx-ID: 785
Haider S, Hasenplaugh W, Alistarh D-A. 2016. Lease/Release: Architectural support for scaling contended data structures. PPoPP: Principles and Practice of Parallel Pogramming vol. 12-16-March-2016.
View | DOI
 
[4]
2016 | Journal Article | IST-REx-ID: 786   OA
Alistarh D-A, Censor Hillel K, Shavit N. 2016. Are lock free concurrent algorithms practically wait free . Journal of the ACM. 63(4).
View | DOI | Download (ext.) | arXiv
 
[3]
2015 | Conference Paper | IST-REx-ID: 784
Alistarh D-A, Ballani H, Costa P, Funnell A, Benjamin J, Watts P, Thomsen B. 2015. A high-radix, low-latency optical switch for data centers. SIGCOMM: Special Interest Group on Data Communication 367–368.
View | DOI
 
[2]
2015 | Conference Paper | IST-REx-ID: 778   OA
Alistarh D-A, Kopinsky J, Kuznetsov P, Ravi S, Shavit N. 2015. Inherent limitations of hybrid transactional memory. DISC: Distributed Computing, LNCS, vol. 9363. 185–199.
View | DOI | Download (ext.) | arXiv
 
[1]
2015 | Conference Paper | IST-REx-ID: 780   OA
Alistarh D-A, Gelashvili R. 2015. Polylogarithmic-time leader election in population protocols. ICALP: International Colloquium on Automota, Languages and Programming vol. 9135. 479–491.
View | DOI | Download (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: IST Annual Report

Export / Embed