30 Publications
2019 | Conference Paper | IST-REx-ID: 6673
D.-A. Alistarh, G. Nadiradze, and N. Koval, “Efficiency guarantees for parallel incremental algorithms under relaxed schedulers,” in 31st ACM Symposium on Parallelism in Algorithms and Architectures, Phoenix, AZ, United States, 2019, pp. 145–154.
View
| DOI
2019 | Conference Paper | IST-REx-ID: 6676   

D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, and L. Zhu, “Why extension-based proofs fail,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019, Phoenix, AZ, United States, 2019, pp. 986–996.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5966   

D.-A. Alistarh, S. K. Haider, R. Kübler, and G. Nadiradze, “The transactional conflict problem,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA ’18, Vienna, Austria, 2018, pp. 383–392.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 6558   

D.-A. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine Stochastic Gradient Descent,” in Advances in Neural Information Processing Systems, Montreal, Canada, 2018, vol. Volume 2018, pp. 4613–4623.
View
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 6589   

D.-A. Alistarh, T. Hoefler, M. Johansson, N. H. Konstantinov, S. Khirirat, and C. Renggli, “The convergence of sparsified gradient methods,” in Advances in Neural Information Processing Systems 31, Montreal, Canada, 2018, vol. Volume 2018, pp. 5973–5983.
View
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5962   

D.-A. Alistarh, C. De Sa, and N. H. Konstantinov, “The convergence of stochastic gradient descent in asynchronous shared memory,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 169–178.
View
| DOI
| Download (ext.)
| arXiv
2018 | Journal Article | IST-REx-ID: 536   

D.-A. Alistarh, J. Aspnes, V. King, and J. Saia, “Communication-efficient randomized consensus,” Distributed Computing, vol. 31, no. 6, pp. 489–501, 2018.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 5963   

D.-A. Alistarh, T. A. Brown, J. Kopinsky, and G. Nadiradze, “Relaxed schedulers can efficiently parallelize iterative algorithms,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 377–386.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 7116   

D. Grubic, L. Tam, D.-A. Alistarh, and C. Zhang, “Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study,” in Proceedings of the 21st International Conference on Extending Database Technology, Vienna, Austria, 2018, pp. 145–156.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 7123   

D.-A. Alistarh, J. Aspnes, and R. Gelashvili, “Space-optimal majority in population protocols,” in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, United States, 2018, pp. 2221–2239.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5964   

V. Aksenov, D.-A. Alistarh, and P. Kuznetsov, “Brief Announcement: Performance prediction for coarse-grained locking,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 411–413.
View
| DOI
| Download (ext.)
2018 | Journal Article | IST-REx-ID: 6001
D.-A. Alistarh, W. Leiserson, A. Matveev, and N. Shavit, “ThreadScan: Automatic and scalable memory reclamation,” ACM Transactions on Parallel Computing, vol. 4, no. 4, 2018.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 5965   

D.-A. Alistarh, T. A. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, “Distributionally linearizable data structures,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA ’18, Vienna, Austria, 2018, pp. 133–142.
View
| DOI
| Download (ext.)
| arXiv
2017 | Conference Paper | IST-REx-ID: 787   

D.-A. Alistarh, J. Aspnes, D. Eisenstat, R. Rivest, and R. Gelashvili, “Time-space trade-offs in population protocols,” presented at the SODA: Symposium on Discrete Algorithms, 2017, pp. 2560–2579.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 788   

D.-A. Alistarh, B. Dudek, A. Kosowski, D. Soloveichik, and P. Uznański, “Robust detection in leak-prone population protocols,” presented at the DNA Computing and Molecular Programming, 2017, vol. 10467 LNCS, pp. 155–171.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 431   

D.-A. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnović, “QSGD: Communication-efficient SGD via gradient quantization and encoding,” presented at the NIPS: Neural Information Processing System, Long Beach, CA, United States, 2017, vol. 2017, pp. 1710–1721.
View
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 791   

D.-A. Alistarh, J. Kopinsky, J. Li, and G. Nadiradze, “The power of choice in priority scheduling,” in Proceedings of the ACM Symposium on Principles of Distributed Computing, Washington, WA, USA, 2017, vol. Part F129314, pp. 283–292.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 432   

H. Zhang, J. Li, K. Kara, D.-A. Alistarh, J. Liu, and C. Zhang, “ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning,” in Proceedings of Machine Learning Research, Sydney, Australia, 2017, vol. 70, pp. 4035–4043.
View
| Files available
2017 | Conference Paper | IST-REx-ID: 487
G. Baig, B. Radunovic, D.-A. Alistarh, M. Balkwill, T. Karagiannis, and L. Qiu, “Towards unlicensed cellular networks in TV white spaces,” in Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies, Incheon, South Korea, 2017, pp. 2–14.
View
| DOI
2016 | Journal Article | IST-REx-ID: 786   

D.-A. Alistarh, K. Censor Hillel, and N. Shavit, “Are lock free concurrent algorithms practically wait free ,” Journal of the ACM, vol. 63, no. 4, 2016.
View
| DOI
| Download (ext.)
| arXiv
2015 | Conference Paper | IST-REx-ID: 780   

D.-A. Alistarh and R. Gelashvili, “Polylogarithmic-time leader election in population protocols,” presented at the ICALP: International Colloquium on Automota, Languages and Programming, 2015, vol. 9135, pp. 479–491.
View
| DOI
| Download (ext.)
| arXiv
2015 | Conference Paper | IST-REx-ID: 778   

D.-A. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit, “Inherent limitations of hybrid transactional memory,” presented at the DISC: Distributed Computing, 2015, vol. 9363, pp. 185–199.
View
| DOI
| Download (ext.)
| arXiv
30 Publications
2019 | Conference Paper | IST-REx-ID: 6673
D.-A. Alistarh, G. Nadiradze, and N. Koval, “Efficiency guarantees for parallel incremental algorithms under relaxed schedulers,” in 31st ACM Symposium on Parallelism in Algorithms and Architectures, Phoenix, AZ, United States, 2019, pp. 145–154.
View
| DOI
2019 | Conference Paper | IST-REx-ID: 6676   

D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, and L. Zhu, “Why extension-based proofs fail,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019, Phoenix, AZ, United States, 2019, pp. 986–996.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5966   

D.-A. Alistarh, S. K. Haider, R. Kübler, and G. Nadiradze, “The transactional conflict problem,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA ’18, Vienna, Austria, 2018, pp. 383–392.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 6558   

D.-A. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine Stochastic Gradient Descent,” in Advances in Neural Information Processing Systems, Montreal, Canada, 2018, vol. Volume 2018, pp. 4613–4623.
View
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 6589   

D.-A. Alistarh, T. Hoefler, M. Johansson, N. H. Konstantinov, S. Khirirat, and C. Renggli, “The convergence of sparsified gradient methods,” in Advances in Neural Information Processing Systems 31, Montreal, Canada, 2018, vol. Volume 2018, pp. 5973–5983.
View
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5962   

D.-A. Alistarh, C. De Sa, and N. H. Konstantinov, “The convergence of stochastic gradient descent in asynchronous shared memory,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 169–178.
View
| DOI
| Download (ext.)
| arXiv
2018 | Journal Article | IST-REx-ID: 536   

D.-A. Alistarh, J. Aspnes, V. King, and J. Saia, “Communication-efficient randomized consensus,” Distributed Computing, vol. 31, no. 6, pp. 489–501, 2018.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 5963   

D.-A. Alistarh, T. A. Brown, J. Kopinsky, and G. Nadiradze, “Relaxed schedulers can efficiently parallelize iterative algorithms,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 377–386.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 7116   

D. Grubic, L. Tam, D.-A. Alistarh, and C. Zhang, “Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study,” in Proceedings of the 21st International Conference on Extending Database Technology, Vienna, Austria, 2018, pp. 145–156.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 7123   

D.-A. Alistarh, J. Aspnes, and R. Gelashvili, “Space-optimal majority in population protocols,” in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, United States, 2018, pp. 2221–2239.
View
| DOI
| Download (ext.)
| arXiv
2018 | Conference Paper | IST-REx-ID: 5964   

V. Aksenov, D.-A. Alistarh, and P. Kuznetsov, “Brief Announcement: Performance prediction for coarse-grained locking,” in Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18, Egham, United Kingdom, 2018, pp. 411–413.
View
| DOI
| Download (ext.)
2018 | Journal Article | IST-REx-ID: 6001
D.-A. Alistarh, W. Leiserson, A. Matveev, and N. Shavit, “ThreadScan: Automatic and scalable memory reclamation,” ACM Transactions on Parallel Computing, vol. 4, no. 4, 2018.
View
| Files available
| DOI
2018 | Conference Paper | IST-REx-ID: 5965   

D.-A. Alistarh, T. A. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, “Distributionally linearizable data structures,” in Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures - SPAA ’18, Vienna, Austria, 2018, pp. 133–142.
View
| DOI
| Download (ext.)
| arXiv
2017 | Conference Paper | IST-REx-ID: 787   

D.-A. Alistarh, J. Aspnes, D. Eisenstat, R. Rivest, and R. Gelashvili, “Time-space trade-offs in population protocols,” presented at the SODA: Symposium on Discrete Algorithms, 2017, pp. 2560–2579.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 788   

D.-A. Alistarh, B. Dudek, A. Kosowski, D. Soloveichik, and P. Uznański, “Robust detection in leak-prone population protocols,” presented at the DNA Computing and Molecular Programming, 2017, vol. 10467 LNCS, pp. 155–171.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 431   

D.-A. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnović, “QSGD: Communication-efficient SGD via gradient quantization and encoding,” presented at the NIPS: Neural Information Processing System, Long Beach, CA, United States, 2017, vol. 2017, pp. 1710–1721.
View
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 791   

D.-A. Alistarh, J. Kopinsky, J. Li, and G. Nadiradze, “The power of choice in priority scheduling,” in Proceedings of the ACM Symposium on Principles of Distributed Computing, Washington, WA, USA, 2017, vol. Part F129314, pp. 283–292.
View
| DOI
| Download (ext.)
2017 | Conference Paper | IST-REx-ID: 432   

H. Zhang, J. Li, K. Kara, D.-A. Alistarh, J. Liu, and C. Zhang, “ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning,” in Proceedings of Machine Learning Research, Sydney, Australia, 2017, vol. 70, pp. 4035–4043.
View
| Files available
2017 | Conference Paper | IST-REx-ID: 487
G. Baig, B. Radunovic, D.-A. Alistarh, M. Balkwill, T. Karagiannis, and L. Qiu, “Towards unlicensed cellular networks in TV white spaces,” in Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies, Incheon, South Korea, 2017, pp. 2–14.
View
| DOI
2016 | Journal Article | IST-REx-ID: 786   

D.-A. Alistarh, K. Censor Hillel, and N. Shavit, “Are lock free concurrent algorithms practically wait free ,” Journal of the ACM, vol. 63, no. 4, 2016.
View
| DOI
| Download (ext.)
| arXiv
2015 | Conference Paper | IST-REx-ID: 780   

D.-A. Alistarh and R. Gelashvili, “Polylogarithmic-time leader election in population protocols,” presented at the ICALP: International Colloquium on Automota, Languages and Programming, 2015, vol. 9135, pp. 479–491.
View
| DOI
| Download (ext.)
| arXiv
2015 | Conference Paper | IST-REx-ID: 778   

D.-A. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit, “Inherent limitations of hybrid transactional memory,” presented at the DISC: Distributed Computing, 2015, vol. 9363, pp. 185–199.
View
| DOI
| Download (ext.)
| arXiv