11 Publications

Mark all

[11]
2017 | Journal Article | IST-REx-ID: 481   OA
T. Biedl, S. Huber, and P. Palfrader, “Planar matchings for weighted straight skeletons,” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4, pp. 211–229, 2017.
View | Files available | DOI
 
[10]
2016 | Journal Article | IST-REx-ID: 1272   OA
M. Held, S. Huber, and P. Palfrader, “Generalized offsetting of planar structures using skeletons,” Computer-Aided Design and Applications, vol. 13, no. 5, pp. 712–721, 2016.
View | Files available | DOI
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale kernel for topological machine learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 4741–4748.
View | DOI | Download (ext.)
 
[8]
2015 | Journal Article | IST-REx-ID: 1584   OA
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Reprint of: Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 5, pp. 429–442, 2015.
View | Files available | DOI
 
[7]
2015 | Conference Paper | IST-REx-ID: 1424   OA
R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-A kernel perspective,” presented at the NIPS: Neural Information Processing Systems, Montreal, Canada, 2015, vol. 28, pp. 3070–3078.
View | Download (ext.)
 
[6]
2015 | Journal Article | IST-REx-ID: 1582
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 2, pp. 120–133, 2015.
View | Files available | DOI
 
[5]
2015 | Book Chapter | IST-REx-ID: 1590   OA
O. Aichholzer et al., “Representing directed trees as straight skeletons,” in Graph Drawing and Network Visualization, vol. 9411, Springer, 2015, pp. 335–347.
View | DOI | Download (ext.)
 
[4]
2015 | Journal Article | IST-REx-ID: 1583   OA
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “A simple algorithm for computing positively weighted straight skeletons of monotone polygons,” Information Processing Letters, vol. 115, no. 2, pp. 243–247, 2015.
View | Files available | DOI
 
[3]
2014 | Journal Article | IST-REx-ID: 1816   OA
S. Huber, M. Held, P. Meerwald, and R. Kwitt, “Topology-preserving watermarking of vector graphics,” International Journal of Computational Geometry and Applications, vol. 24, no. 1, pp. 61–86, 2014.
View | Files available | DOI
 
[2]
2013 | Conference Paper | IST-REx-ID: 2210   OA
T. Biedl, M. Held, and S. Huber, “Reconstructing polygons from embedded straight skeletons,” in 29th European Workshop on Computational Geometry, Braunschweig, Germany, 2013, pp. 95–98.
View | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2209
T. Biedl, M. Held, and S. Huber, “Recognizing straight skeletons and Voronoi diagrams and reconstructing their input,” presented at the ISVD: Voronoi Diagrams in Science and Engineering, St. Petersburg, Russia, 2013, pp. 37–46.
View | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed

11 Publications

Mark all

[11]
2017 | Journal Article | IST-REx-ID: 481   OA
T. Biedl, S. Huber, and P. Palfrader, “Planar matchings for weighted straight skeletons,” International Journal of Computational Geometry and Applications, vol. 26, no. 3–4, pp. 211–229, 2017.
View | Files available | DOI
 
[10]
2016 | Journal Article | IST-REx-ID: 1272   OA
M. Held, S. Huber, and P. Palfrader, “Generalized offsetting of planar structures using skeletons,” Computer-Aided Design and Applications, vol. 13, no. 5, pp. 712–721, 2016.
View | Files available | DOI
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-scale kernel for topological machine learning,” presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 4741–4748.
View | DOI | Download (ext.)
 
[8]
2015 | Journal Article | IST-REx-ID: 1584   OA
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Reprint of: Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 5, pp. 429–442, 2015.
View | Files available | DOI
 
[7]
2015 | Conference Paper | IST-REx-ID: 1424   OA
R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-A kernel perspective,” presented at the NIPS: Neural Information Processing Systems, Montreal, Canada, 2015, vol. 28, pp. 3070–3078.
View | Download (ext.)
 
[6]
2015 | Journal Article | IST-REx-ID: 1582
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “Weighted straight skeletons in the plane,” Computational Geometry: Theory and Applications, vol. 48, no. 2, pp. 120–133, 2015.
View | Files available | DOI
 
[5]
2015 | Book Chapter | IST-REx-ID: 1590   OA
O. Aichholzer et al., “Representing directed trees as straight skeletons,” in Graph Drawing and Network Visualization, vol. 9411, Springer, 2015, pp. 335–347.
View | DOI | Download (ext.)
 
[4]
2015 | Journal Article | IST-REx-ID: 1583   OA
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader, “A simple algorithm for computing positively weighted straight skeletons of monotone polygons,” Information Processing Letters, vol. 115, no. 2, pp. 243–247, 2015.
View | Files available | DOI
 
[3]
2014 | Journal Article | IST-REx-ID: 1816   OA
S. Huber, M. Held, P. Meerwald, and R. Kwitt, “Topology-preserving watermarking of vector graphics,” International Journal of Computational Geometry and Applications, vol. 24, no. 1, pp. 61–86, 2014.
View | Files available | DOI
 
[2]
2013 | Conference Paper | IST-REx-ID: 2210   OA
T. Biedl, M. Held, and S. Huber, “Reconstructing polygons from embedded straight skeletons,” in 29th European Workshop on Computational Geometry, Braunschweig, Germany, 2013, pp. 95–98.
View | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2209
T. Biedl, M. Held, and S. Huber, “Recognizing straight skeletons and Voronoi diagrams and reconstructing their input,” presented at the ISVD: Voronoi Diagrams in Science and Engineering, St. Petersburg, Russia, 2013, pp. 37–46.
View | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed