11 Publications

Mark all

[11]
2017 | Journal Article | IST-REx-ID: 481   OA
Biedl, T., Huber, S., & Palfrader, P. (2017). Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications, 26(3–4), 211–229. https://doi.org/10.1142/S0218195916600050
View | Files available | DOI
 
[10]
2016 | Journal Article | IST-REx-ID: 1272   OA
Held, M., Huber, S., & Palfrader, P. (2016). Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications, 13(5), 712–721. https://doi.org/10.1080/16864360.2016.1150718
View | Files available | DOI
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106
View | DOI | Download (ext.)
 
[8]
2015 | Journal Article | IST-REx-ID: 1584   OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications, 48(5), 429–442. https://doi.org/10.1016/j.comgeo.2015.01.004
View | Files available | DOI
 
[7]
2015 | Conference Paper | IST-REx-ID: 1424   OA
Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
View | Download (ext.)
 
[6]
2015 | Journal Article | IST-REx-ID: 1582
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications, 48(2), 120–133. https://doi.org/10.1016/j.comgeo.2014.08.006
View | Files available | DOI
 
[5]
2015 | Book Chapter | IST-REx-ID: 1590   OA
Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P., & Vogtenhuber, B. (2015). Representing directed trees as straight skeletons. In Graph Drawing and Network Visualization (Vol. 9411, pp. 335–347). Los Angeles, CA, United States: Springer. https://doi.org/10.1007/978-3-319-27261-0_28
View | DOI | Download (ext.)
 
[4]
2015 | Journal Article | IST-REx-ID: 1583   OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters, 115(2), 243–247. https://doi.org/10.1016/j.ipl.2014.09.021
View | Files available | DOI
 
[3]
2014 | Journal Article | IST-REx-ID: 1816   OA
Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications, 24(1), 61–86. https://doi.org/10.1142/S0218195914500034
View | Files available | DOI
 
[2]
2013 | Conference Paper | IST-REx-ID: 2210   OA
Biedl, T., Held, M., & Huber, S. (2013). Reconstructing polygons from embedded straight skeletons. In 29th European Workshop on Computational Geometry (pp. 95–98). Braunschweig, Germany: TU Braunschweig.
View | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2209
Biedl, T., Held, M., & Huber, S. (2013). Recognizing straight skeletons and Voronoi diagrams and reconstructing their input (pp. 37–46). Presented at the ISVD: Voronoi Diagrams in Science and Engineering, St. Petersburg, Russia: IEEE. https://doi.org/10.1109/ISVD.2013.11
View | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed

11 Publications

Mark all

[11]
2017 | Journal Article | IST-REx-ID: 481   OA
Biedl, T., Huber, S., & Palfrader, P. (2017). Planar matchings for weighted straight skeletons. International Journal of Computational Geometry and Applications, 26(3–4), 211–229. https://doi.org/10.1142/S0218195916600050
View | Files available | DOI
 
[10]
2016 | Journal Article | IST-REx-ID: 1272   OA
Held, M., Huber, S., & Palfrader, P. (2016). Generalized offsetting of planar structures using skeletons. Computer-Aided Design and Applications, 13(5), 712–721. https://doi.org/10.1080/16864360.2016.1150718
View | Files available | DOI
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning (pp. 4741–4748). Presented at the CVPR: Computer Vision and Pattern Recognition, Boston, MA, USA: IEEE. https://doi.org/10.1109/CVPR.2015.7299106
View | DOI | Download (ext.)
 
[8]
2015 | Journal Article | IST-REx-ID: 1584   OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Reprint of: Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications, 48(5), 429–442. https://doi.org/10.1016/j.comgeo.2015.01.004
View | Files available | DOI
 
[7]
2015 | Conference Paper | IST-REx-ID: 1424   OA
Kwitt, R., Huber, S., Niethammer, M., Lin, W., & Bauer, U. (2015). Statistical topological data analysis-A kernel perspective (Vol. 28, pp. 3070–3078). Presented at the NIPS: Neural Information Processing Systems, Montreal, Canada: Neural Information Processing Systems.
View | Download (ext.)
 
[6]
2015 | Journal Article | IST-REx-ID: 1582
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). Weighted straight skeletons in the plane. Computational Geometry: Theory and Applications, 48(2), 120–133. https://doi.org/10.1016/j.comgeo.2014.08.006
View | Files available | DOI
 
[5]
2015 | Book Chapter | IST-REx-ID: 1590   OA
Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P., & Vogtenhuber, B. (2015). Representing directed trees as straight skeletons. In Graph Drawing and Network Visualization (Vol. 9411, pp. 335–347). Los Angeles, CA, United States: Springer. https://doi.org/10.1007/978-3-319-27261-0_28
View | DOI | Download (ext.)
 
[4]
2015 | Journal Article | IST-REx-ID: 1583   OA
Biedl, T., Held, M., Huber, S., Kaaser, D., & Palfrader, P. (2015). A simple algorithm for computing positively weighted straight skeletons of monotone polygons. Information Processing Letters, 115(2), 243–247. https://doi.org/10.1016/j.ipl.2014.09.021
View | Files available | DOI
 
[3]
2014 | Journal Article | IST-REx-ID: 1816   OA
Huber, S., Held, M., Meerwald, P., & Kwitt, R. (2014). Topology-preserving watermarking of vector graphics. International Journal of Computational Geometry and Applications, 24(1), 61–86. https://doi.org/10.1142/S0218195914500034
View | Files available | DOI
 
[2]
2013 | Conference Paper | IST-REx-ID: 2210   OA
Biedl, T., Held, M., & Huber, S. (2013). Reconstructing polygons from embedded straight skeletons. In 29th European Workshop on Computational Geometry (pp. 95–98). Braunschweig, Germany: TU Braunschweig.
View | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2209
Biedl, T., Held, M., & Huber, S. (2013). Recognizing straight skeletons and Voronoi diagrams and reconstructing their input (pp. 37–46). Presented at the ISVD: Voronoi Diagrams in Science and Engineering, St. Petersburg, Russia: IEEE. https://doi.org/10.1109/ISVD.2013.11
View | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed