6 Publications

Mark all

[6]
2020 | Thesis | IST-REx-ID: 7944 | OA
Masárová, Zuzana. Reconfiguration Problems. IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944.
View | Files available | DOI
 
[5]
2020 | Journal Article | IST-REx-ID: 8317 | OA
Aichholzer, Oswin, Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” Computational Geometry: Theory and Applications 93 (n.d.). https://doi.org/10.1016/j.comgeo.2020.101700.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[4]
2019 | Preprint | IST-REx-ID: 7950 | OA
Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” ArXiv:1903.06981. ArXiv, n.d.
View | Files available | Download Preprint (ext.) | arXiv
 
[3]
2019 | Journal Article | IST-REx-ID: 5986 | OA
Lubiw, Anna, Zuzana Masárová, and Uli Wagner. “A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations.” Discrete & Computational Geometry 61, no. 4 (2019): 880–98. https://doi.org/10.1007/s00454-018-0035-8.
View | Files available | DOI | arXiv
 
[2]
2019 | Conference Paper | IST-REx-ID: 6989 | OA
Aichholzer, Oswin, Hugo A Akitaya, Kenneth C Cheung, Erik D Demaine, Martin L Demaine, Sandor P Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” In Proceedings of the 31st Canadian Conference on Computational Geometry, 164–70. Canadian Conference on Computational Geometry, 2019.
View | Files available | Download Published Version (ext.) | arXiv
 
[1]
2017 | Conference Paper | IST-REx-ID: 683 | OA
Lubiw, Anna, Zuzana Masárová, and Uli Wagner. “A Proof of the Orbit Conjecture for Flipping Edge Labelled Triangulations,” Vol. 77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.49.
View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: Chicago

Export / Embed

6 Publications

Mark all

[6]
2020 | Thesis | IST-REx-ID: 7944 | OA
Masárová, Zuzana. Reconfiguration Problems. IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:7944.
View | Files available | DOI
 
[5]
2020 | Journal Article | IST-REx-ID: 8317 | OA
Aichholzer, Oswin, Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” Computational Geometry: Theory and Applications 93 (n.d.). https://doi.org/10.1016/j.comgeo.2020.101700.
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[4]
2019 | Preprint | IST-REx-ID: 7950 | OA
Biniaz, Ahmad, Kshitij Jain, Anna Lubiw, Zuzana Masárová, Tillmann Miltzow, Debajyoti Mondal, Anurag Murty Naredla, Josef Tkadlec, and Alexi Turcotte. “Token Swapping on Trees.” ArXiv:1903.06981. ArXiv, n.d.
View | Files available | Download Preprint (ext.) | arXiv
 
[3]
2019 | Journal Article | IST-REx-ID: 5986 | OA
Lubiw, Anna, Zuzana Masárová, and Uli Wagner. “A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations.” Discrete & Computational Geometry 61, no. 4 (2019): 880–98. https://doi.org/10.1007/s00454-018-0035-8.
View | Files available | DOI | arXiv
 
[2]
2019 | Conference Paper | IST-REx-ID: 6989 | OA
Aichholzer, Oswin, Hugo A Akitaya, Kenneth C Cheung, Erik D Demaine, Martin L Demaine, Sandor P Fekete, Linda Kleist, et al. “Folding Polyominoes with Holes into a Cube.” In Proceedings of the 31st Canadian Conference on Computational Geometry, 164–70. Canadian Conference on Computational Geometry, 2019.
View | Files available | Download Published Version (ext.) | arXiv
 
[1]
2017 | Conference Paper | IST-REx-ID: 683 | OA
Lubiw, Anna, Zuzana Masárová, and Uli Wagner. “A Proof of the Orbit Conjecture for Flipping Edge Labelled Triangulations,” Vol. 77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.49.
View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: Chicago

Export / Embed