13 Publications

Mark all

[13]
2021 | Journal Article | IST-REx-ID: 9234 | OA
Izuchukwu, C., & Shehu, Y. (2021). New inertial projection methods for solving multivalued variational inequality problems beyond monotonicity. Networks and Spatial Economics. Springer Nature. https://doi.org/10.1007/s11067-021-09517-w
View | DOI | Download Published Version (ext.)
 
[12]
2021 | Journal Article | IST-REx-ID: 9315
Iyiola, O. S., & Shehu, Y. (2021). New convergence results for inertial Krasnoselskii–Mann iterations in Hilbert spaces with applications. Results in Mathematics. Springer Nature. https://doi.org/10.1007/s00025-021-01381-x
View | DOI
 
[11]
2021 | Journal Article | IST-REx-ID: 9365
Ogbuisi, F. U., Shehu, Y., & Yao, J. C. (2021). Convergence analysis of new inertial method for the split common null point problem. Optimization. Taylor and Francis. https://doi.org/10.1080/02331934.2021.1914035
View | DOI
 
[10]
2021 | Journal Article | IST-REx-ID: 9469
Iyiola, O. S., Enyi, C. D., & Shehu, Y. (2021). Reflected three-operator splitting method for monotone inclusion problem. Optimization Methods and Software. Taylor and Francis. https://doi.org/10.1080/10556788.2021.1924715
View | DOI
 
[9]
2020 | Journal Article | IST-REx-ID: 8077 | OA
Shehu, Y., & Iyiola, O. S. (2020). Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics. Elsevier. https://doi.org/10.1016/j.apnum.2020.06.009
View | Files available | DOI
 
[8]
2020 | Journal Article | IST-REx-ID: 8196 | OA
Shehu, Y., Dong, Q.-L., Liu, L.-L., & Yao, J.-C. (2020). New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. Springer Nature. https://doi.org/10.1007/s11081-020-09544-5
View | Files available | DOI
 
[7]
2020 | Journal Article | IST-REx-ID: 8817
Shehu, Y., Iyiola, O. S., Thong, D. V., & Van, N. T. C. (2020). An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems. Mathematical Methods of Operations Research. Springer Nature. https://doi.org/10.1007/s00186-020-00730-w
View | DOI
 
[6]
2020 | Journal Article | IST-REx-ID: 7925 | OA
Shehu, Y., & Gibali, A. (2020). New inertial relaxed method for solving split feasibilities. Optimization Letters. Springer Nature. https://doi.org/10.1007/s11590-020-01603-1
View | DOI | Download Published Version (ext.)
 
[5]
2020 | Journal Article | IST-REx-ID: 6593 | OA
Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. Springer Nature. https://doi.org/10.1007/s11075-019-00758-y
View | Files available | DOI
 
[4]
2020 | Journal Article | IST-REx-ID: 7161 | OA
Shehu, Y., Gibali, A., & Sagratella, S. (2020). Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. Springer Nature. https://doi.org/10.1007/s10957-019-01616-6
View | Files available | DOI
 
[3]
2020 | Journal Article | IST-REx-ID: 7577 | OA
Shehu, Y., & Iyiola, O. S. (n.d.). Weak convergence for variational inequalities with inertial-type method. Applicable Analysis. Taylor & Francis. https://doi.org/10.1080/00036811.2020.1736287
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[2]
2019 | Journal Article | IST-REx-ID: 6596 | OA
Shehu, Y. (2019). Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics. Springer. https://doi.org/10.1007/s00025-019-1061-4
View | Files available | DOI | arXiv
 
[1]
2019 | Journal Article | IST-REx-ID: 7000 | OA
Shehu, Y., Iyiola, O. S., Li, X.-H., & Dong, Q.-L. (2019). Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. Springer Nature. https://doi.org/10.1007/s40314-019-0955-9
View | DOI | Download Published Version (ext.) | arXiv
 

Search

Filter Publications

13 Publications

Mark all

[13]
2021 | Journal Article | IST-REx-ID: 9234 | OA
Izuchukwu, C., & Shehu, Y. (2021). New inertial projection methods for solving multivalued variational inequality problems beyond monotonicity. Networks and Spatial Economics. Springer Nature. https://doi.org/10.1007/s11067-021-09517-w
View | DOI | Download Published Version (ext.)
 
[12]
2021 | Journal Article | IST-REx-ID: 9315
Iyiola, O. S., & Shehu, Y. (2021). New convergence results for inertial Krasnoselskii–Mann iterations in Hilbert spaces with applications. Results in Mathematics. Springer Nature. https://doi.org/10.1007/s00025-021-01381-x
View | DOI
 
[11]
2021 | Journal Article | IST-REx-ID: 9365
Ogbuisi, F. U., Shehu, Y., & Yao, J. C. (2021). Convergence analysis of new inertial method for the split common null point problem. Optimization. Taylor and Francis. https://doi.org/10.1080/02331934.2021.1914035
View | DOI
 
[10]
2021 | Journal Article | IST-REx-ID: 9469
Iyiola, O. S., Enyi, C. D., & Shehu, Y. (2021). Reflected three-operator splitting method for monotone inclusion problem. Optimization Methods and Software. Taylor and Francis. https://doi.org/10.1080/10556788.2021.1924715
View | DOI
 
[9]
2020 | Journal Article | IST-REx-ID: 8077 | OA
Shehu, Y., & Iyiola, O. S. (2020). Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics. Elsevier. https://doi.org/10.1016/j.apnum.2020.06.009
View | Files available | DOI
 
[8]
2020 | Journal Article | IST-REx-ID: 8196 | OA
Shehu, Y., Dong, Q.-L., Liu, L.-L., & Yao, J.-C. (2020). New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. Springer Nature. https://doi.org/10.1007/s11081-020-09544-5
View | Files available | DOI
 
[7]
2020 | Journal Article | IST-REx-ID: 8817
Shehu, Y., Iyiola, O. S., Thong, D. V., & Van, N. T. C. (2020). An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems. Mathematical Methods of Operations Research. Springer Nature. https://doi.org/10.1007/s00186-020-00730-w
View | DOI
 
[6]
2020 | Journal Article | IST-REx-ID: 7925 | OA
Shehu, Y., & Gibali, A. (2020). New inertial relaxed method for solving split feasibilities. Optimization Letters. Springer Nature. https://doi.org/10.1007/s11590-020-01603-1
View | DOI | Download Published Version (ext.)
 
[5]
2020 | Journal Article | IST-REx-ID: 6593 | OA
Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. Springer Nature. https://doi.org/10.1007/s11075-019-00758-y
View | Files available | DOI
 
[4]
2020 | Journal Article | IST-REx-ID: 7161 | OA
Shehu, Y., Gibali, A., & Sagratella, S. (2020). Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. Springer Nature. https://doi.org/10.1007/s10957-019-01616-6
View | Files available | DOI
 
[3]
2020 | Journal Article | IST-REx-ID: 7577 | OA
Shehu, Y., & Iyiola, O. S. (n.d.). Weak convergence for variational inequalities with inertial-type method. Applicable Analysis. Taylor & Francis. https://doi.org/10.1080/00036811.2020.1736287
View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[2]
2019 | Journal Article | IST-REx-ID: 6596 | OA
Shehu, Y. (2019). Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics. Springer. https://doi.org/10.1007/s00025-019-1061-4
View | Files available | DOI | arXiv
 
[1]
2019 | Journal Article | IST-REx-ID: 7000 | OA
Shehu, Y., Iyiola, O. S., Li, X.-H., & Dong, Q.-L. (2019). Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. Springer Nature. https://doi.org/10.1007/s40314-019-0955-9
View | DOI | Download Published Version (ext.) | arXiv
 

Search

Filter Publications