8 Publications

Mark all

[8]
2020 | Journal Article | IST-REx-ID: 7925 | OA
Shehu Y, Gibali A. New inertial relaxed method for solving split feasibilities. Optimization Letters. 2020. doi:10.1007/s11590-020-01603-1
View | DOI | Download Published Version (ext.)
 
[7]
2020 | Journal Article | IST-REx-ID: 6593 | OA
Shehu Y, Li X-H, Dong Q-L. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 2020;84:365-388. doi:10.1007/s11075-019-00758-y
View | Files available | DOI
 
[6]
2020 | Journal Article | IST-REx-ID: 8077 | OA
Shehu Y, Iyiola OS. Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics. 2020;157:315-337. doi:10.1016/j.apnum.2020.06.009
View | Files available | DOI
 
[5]
2020 | Journal Article | IST-REx-ID: 8196 | OA
Shehu Y, Dong Q-L, Liu L-L, Yao J-C. New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. 2020. doi:10.1007/s11081-020-09544-5
View | Files available | DOI
 
[4]
2020 | Journal Article | IST-REx-ID: 7161
Shehu Y, Gibali A, Sagratella S. Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. 2020;184:877–894. doi:10.1007/s10957-019-01616-6
View | Files available | DOI
 
[3]
2020 | Journal Article | IST-REx-ID: 7577
Shehu Y, Iyiola OS. Weak convergence for variational inequalities with inertial-type method. Applicable Analysis. 2020:1-25. doi:10.1080/00036811.2020.1736287
View | Files available | DOI
 
[2]
2019 | Journal Article | IST-REx-ID: 6596 | OA
Shehu Y. Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics. 2019;74(4). doi:10.1007/s00025-019-1061-4
View | Files available | DOI
 
[1]
2019 | Journal Article | IST-REx-ID: 7000 | OA
Shehu Y, Iyiola OS, Li X-H, Dong Q-L. Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. 2019;38(4). doi:10.1007/s40314-019-0955-9
View | DOI | Download Published Version (ext.)
 

Search

Filter Publications

8 Publications

Mark all

[8]
2020 | Journal Article | IST-REx-ID: 7925 | OA
Shehu Y, Gibali A. New inertial relaxed method for solving split feasibilities. Optimization Letters. 2020. doi:10.1007/s11590-020-01603-1
View | DOI | Download Published Version (ext.)
 
[7]
2020 | Journal Article | IST-REx-ID: 6593 | OA
Shehu Y, Li X-H, Dong Q-L. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 2020;84:365-388. doi:10.1007/s11075-019-00758-y
View | Files available | DOI
 
[6]
2020 | Journal Article | IST-REx-ID: 8077 | OA
Shehu Y, Iyiola OS. Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics. 2020;157:315-337. doi:10.1016/j.apnum.2020.06.009
View | Files available | DOI
 
[5]
2020 | Journal Article | IST-REx-ID: 8196 | OA
Shehu Y, Dong Q-L, Liu L-L, Yao J-C. New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. 2020. doi:10.1007/s11081-020-09544-5
View | Files available | DOI
 
[4]
2020 | Journal Article | IST-REx-ID: 7161
Shehu Y, Gibali A, Sagratella S. Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. 2020;184:877–894. doi:10.1007/s10957-019-01616-6
View | Files available | DOI
 
[3]
2020 | Journal Article | IST-REx-ID: 7577
Shehu Y, Iyiola OS. Weak convergence for variational inequalities with inertial-type method. Applicable Analysis. 2020:1-25. doi:10.1080/00036811.2020.1736287
View | Files available | DOI
 
[2]
2019 | Journal Article | IST-REx-ID: 6596 | OA
Shehu Y. Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics. 2019;74(4). doi:10.1007/s00025-019-1061-4
View | Files available | DOI
 
[1]
2019 | Journal Article | IST-REx-ID: 7000 | OA
Shehu Y, Iyiola OS, Li X-H, Dong Q-L. Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. 2019;38(4). doi:10.1007/s40314-019-0955-9
View | DOI | Download Published Version (ext.)
 

Search

Filter Publications