10 Publications

Mark all

[10]
2017 | Journal Article | IST-REx-ID: 1072   OA
Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society 369, no. 5 (2017): 3741–62.
View | Download (ext.)
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106.
View | DOI | Download (ext.)
 
[8]
2015 | Conference Paper | IST-REx-ID: 1424   OA
Kwitt, Roland, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topological Data Analysis-A Kernel Perspective,” 28:3070–78. Neural Information Processing Systems, 2015.
View | Download (ext.)
 
[7]
2015 | Journal Article | IST-REx-ID: 1805
Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications 48, no. 8 (2015): 606–21. https://doi.org/10.1016/j.comgeo.2014.08.010.
View | Files available | DOI
 
[6]
2014 | Book Chapter | IST-REx-ID: 2044   OA
Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.
View | DOI | Download (ext.)
 
[5]
2014 | Conference Paper | IST-REx-ID: 2153   OA
Bauer, Ulrich, and Michael Lesnick. “Induced Matchings of Barcodes and the Algebraic Stability of Persistence.” In Proceedings of the Annual Symposium on Computational Geometry, 355–64. ACM, 2014. https://doi.org/10.1145/2582112.2582168.
View | DOI | Download (ext.)
 
[4]
2014 | Conference Paper | IST-REx-ID: 2155   OA
Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Filtrations.” In Proceedings of the Annual Symposium on Computational Geometry, 484–90. ACM, 2014. https://doi.org/10.1145/2582112.2582167.
View | DOI | Download (ext.)
 
[3]
2014 | Conference Paper | IST-REx-ID: 2043   OA
Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Distributed Computation of Persistent Homology.” In Proceedings of the Workshop on Algorithm Engineering and Experiments, edited by Catherine McGeoch and Ulrich Meyer, 31–38. Society of Industrial and Applied Mathematics, 2014. https://doi.org/10.1137/1.9781611973198.4.
View | DOI | Download (ext.)
 
[2]
2014 | Conference Paper | IST-REx-ID: 2156   OA
Bauer, Ulrich, Xiaoyin Ge, and Yusu Wang. “Measuring Distance between Reeb Graphs.” In Proceedings of the Annual Symposium on Computational Geometry, 464–73. ACM, 2014. https://doi.org/10.1145/2582112.2582169.
View | DOI | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2812   OA
Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” In Proceedings of the 29th Annual Symposium on Computational Geometry, 117–25. ACM, 2013. https://doi.org/10.1145/2462356.2462373.
View | Files available | DOI | Download (ext.)
 

Search

Filter Publications

Display / Sort

Citation Style: Chicago

Export / Embed

10 Publications

Mark all

[10]
2017 | Journal Article | IST-REx-ID: 1072   OA
Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Complexes.” Transactions of the American Mathematical Society 369, no. 5 (2017): 3741–62.
View | Download (ext.)
 
[9]
2015 | Conference Paper | IST-REx-ID: 1483   OA
Reininghaus, Jan, Stefan Huber, Ulrich Bauer, and Roland Kwitt. “A Stable Multi-Scale Kernel for Topological Machine Learning,” 4741–48. IEEE, 2015. https://doi.org/10.1109/CVPR.2015.7299106.
View | DOI | Download (ext.)
 
[8]
2015 | Conference Paper | IST-REx-ID: 1424   OA
Kwitt, Roland, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. “Statistical Topological Data Analysis-A Kernel Perspective,” 28:3070–78. Neural Information Processing Systems, 2015.
View | Download (ext.)
 
[7]
2015 | Journal Article | IST-REx-ID: 1805
Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” Computational Geometry: Theory and Applications 48, no. 8 (2015): 606–21. https://doi.org/10.1016/j.comgeo.2014.08.010.
View | Files available | DOI
 
[6]
2014 | Book Chapter | IST-REx-ID: 2044   OA
Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Clear and Compress: Computing Persistent Homology in Chunks.” In Topological Methods in Data Analysis and Visualization III, edited by Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, 103–17. Mathematics and Visualization. Springer, 2014. https://doi.org/10.1007/978-3-319-04099-8_7.
View | DOI | Download (ext.)
 
[5]
2014 | Conference Paper | IST-REx-ID: 2153   OA
Bauer, Ulrich, and Michael Lesnick. “Induced Matchings of Barcodes and the Algebraic Stability of Persistence.” In Proceedings of the Annual Symposium on Computational Geometry, 355–64. ACM, 2014. https://doi.org/10.1145/2582112.2582168.
View | DOI | Download (ext.)
 
[4]
2014 | Conference Paper | IST-REx-ID: 2155   OA
Bauer, Ulrich, and Herbert Edelsbrunner. “The Morse Theory of Čech and Delaunay Filtrations.” In Proceedings of the Annual Symposium on Computational Geometry, 484–90. ACM, 2014. https://doi.org/10.1145/2582112.2582167.
View | DOI | Download (ext.)
 
[3]
2014 | Conference Paper | IST-REx-ID: 2043   OA
Bauer, Ulrich, Michael Kerber, and Jan Reininghaus. “Distributed Computation of Persistent Homology.” In Proceedings of the Workshop on Algorithm Engineering and Experiments, edited by Catherine McGeoch and Ulrich Meyer, 31–38. Society of Industrial and Applied Mathematics, 2014. https://doi.org/10.1137/1.9781611973198.4.
View | DOI | Download (ext.)
 
[2]
2014 | Conference Paper | IST-REx-ID: 2156   OA
Bauer, Ulrich, Xiaoyin Ge, and Yusu Wang. “Measuring Distance between Reeb Graphs.” In Proceedings of the Annual Symposium on Computational Geometry, 464–73. ACM, 2014. https://doi.org/10.1145/2582112.2582169.
View | DOI | Download (ext.)
 
[1]
2013 | Conference Paper | IST-REx-ID: 2812   OA
Attali, Dominique, Ulrich Bauer, Olivier Devillers, Marc Glisse, and André Lieutier. “Homological Reconstruction and Simplification in R3.” In Proceedings of the 29th Annual Symposium on Computational Geometry, 117–25. ACM, 2013. https://doi.org/10.1145/2462356.2462373.
View | Files available | DOI | Download (ext.)
 

Search

Filter Publications

Display / Sort

Citation Style: Chicago

Export / Embed