Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




60 Publications

2020 | Journal Article | IST-REx-ID: 6593 | OA
Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms, 84, 365–388. https://doi.org/10.1007/s11075-019-00758-y
View | Files available | DOI
 
2020 | Journal Article | IST-REx-ID: 7577
Shehu, Y., & Iyiola, O. S. (2020). Weak convergence for variational inequalities with inertial-type method. Applicable Analysis, 1–25. https://doi.org/10.1080/00036811.2020.1736287
View | DOI
 
2020 | Journal Article | IST-REx-ID: 7925 | OA
Shehu, Y., & Gibali, A. (2020). New inertial relaxed method for solving split feasibilities. Optimization Letters. https://doi.org/10.1007/s11590-020-01603-1
View | DOI | Download Published Version (ext.)
 
2020 | Journal Article | IST-REx-ID: 8077 | OA
Shehu, Y., & Iyiola, O. S. (2020). Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics, 157, 315–337. https://doi.org/10.1016/j.apnum.2020.06.009
View | Files available | DOI
 
2020 | Journal Article | IST-REx-ID: 8196 | OA
Shehu, Y., Dong, Q.-L., Liu, L.-L., & Yao, J.-C. (2020). New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. https://doi.org/10.1007/s11081-020-09544-5
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 6596 | OA
Shehu, Y. (2019). Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics, 74(4). https://doi.org/10.1007/s00025-019-1061-4
View | Files available | DOI
 
2019 | Conference Paper | IST-REx-ID: 6725 | OA
Kolmogorov, V. (2019). Testing the complexity of a valued CSP language. In 46th International Colloquium on Automata, Languages and Programming (Vol. 132, p. 77:1-77:12). Patras, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ICALP.2019.77
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 7000
Shehu, Y., Iyiola, O. S., Li, X.-H., & Dong, Q.-L. (2019). Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics, 38(4). https://doi.org/10.1007/s40314-019-0955-9
View | DOI
 
2019 | Journal Article | IST-REx-ID: 7161
Shehu, Y., Gibali, A., & Sagratella, S. (2019). Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. https://doi.org/10.1007/s10957-019-01616-6
View | DOI
 
2019 | Journal Article | IST-REx-ID: 7412 | OA
Achlioptas, D., Iliopoulos, F., & Kolmogorov, V. (2019). A local lemma for focused stochastical algorithms. SIAM Journal on Computing, 48(5), 1583–1602. https://doi.org/10.1137/16m109332x
View | DOI | Download Preprint (ext.) | arXiv
 

Search

Filter Publications