Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
58 Publications
2020 | Journal Article | IST-REx-ID: 6593 |

Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. Springer Nature. https://doi.org/10.1007/s11075-019-00758-y
View
| Files available
| DOI
2020 | Journal Article | IST-REx-ID: 7161
Shehu, Y., Gibali, A., & Sagratella, S. (2020). Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces. Journal of Optimization Theory and Applications. Springer Nature. https://doi.org/10.1007/s10957-019-01616-6
View
| Files available
| DOI
2020 | Journal Article | IST-REx-ID: 8077 |

Shehu, Y., & Iyiola, O. S. (2020). Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Applied Numerical Mathematics. Elsevier. https://doi.org/10.1016/j.apnum.2020.06.009
View
| Files available
| DOI
2020 | Journal Article | IST-REx-ID: 8817
Shehu, Y., Iyiola, O. S., Thong, D. V., & Van, N. T. C. (2020). An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems. Mathematical Methods of Operations Research. Springer Nature. https://doi.org/10.1007/s00186-020-00730-w
View
| DOI
2020 | Journal Article | IST-REx-ID: 7577
Shehu, Y., & Iyiola, O. S. (n.d.). Weak convergence for variational inequalities with inertial-type method. Applicable Analysis. Taylor & Francis. https://doi.org/10.1080/00036811.2020.1736287
View
| Files available
| DOI
2020 | Journal Article | IST-REx-ID: 7925 |

Shehu, Y., & Gibali, A. (2020). New inertial relaxed method for solving split feasibilities. Optimization Letters. Springer Nature. https://doi.org/10.1007/s11590-020-01603-1
View
| DOI
| Download Published Version (ext.)
2020 | Journal Article | IST-REx-ID: 8196 |

Shehu, Y., Dong, Q.-L., Liu, L.-L., & Yao, J.-C. (2020). New strong convergence method for the sum of two maximal monotone operators. Optimization and Engineering. Springer Nature. https://doi.org/10.1007/s11081-020-09544-5
View
| Files available
| DOI
2019 | Journal Article | IST-REx-ID: 6596 |

Shehu, Y. (2019). Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Results in Mathematics. Springer. https://doi.org/10.1007/s00025-019-1061-4
View
| Files available
| DOI
2019 | Conference Paper | IST-REx-ID: 6725 |

Kolmogorov, V. (2019). Testing the complexity of a valued CSP language. In 46th International Colloquium on Automata, Languages and Programming (Vol. 132, p. 77:1-77:12). Patras, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ICALP.2019.77
View
| Files available
| DOI
| arXiv
2019 | Journal Article | IST-REx-ID: 7000 |

Shehu, Y., Iyiola, O. S., Li, X.-H., & Dong, Q.-L. (2019). Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. Springer Nature. https://doi.org/10.1007/s40314-019-0955-9
View
| DOI
| Download Published Version (ext.)