TY - JOUR AB - Given a fixed finite metric space (V,μ), the {\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs. AU - Dvorak, Martin AU - Kolmogorov, Vladimir ID - 10045 JF - Mathematical Programming KW - minimum 0-extension problem KW - metric labeling problem KW - discrete metric spaces KW - metric extensions KW - computational complexity KW - valued constraint satisfaction problems KW - discrete convex analysis KW - L-convex functions SN - 0025-5610 TI - Generalized minimum 0-extension problem and discrete convexity ER - TY - CONF AB - A central problem in computational statistics is to convert a procedure for sampling combinatorial objects into a procedure for counting those objects, and vice versa. We will consider sampling problems which come from Gibbs distributions, which are families of probability distributions over a discrete space Ω with probability mass function of the form μ^Ω_β(ω) ∝ e^{β H(ω)} for β in an interval [β_min, β_max] and H(ω) ∈ {0} ∪ [1, n]. The partition function is the normalization factor Z(β) = ∑_{ω ∈ Ω} e^{β H(ω)}, and the log partition ratio is defined as q = (log Z(β_max))/Z(β_min) We develop a number of algorithms to estimate the counts c_x using roughly Õ(q/ε²) samples for general Gibbs distributions and Õ(n²/ε²) samples for integer-valued distributions (ignoring some second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. AU - Harris, David G. AU - Kolmogorov, Vladimir ID - 14084 SN - 1868-8969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Parameter estimation for Gibbs distributions VL - 261 ER - TY - CONF AB - We formalized general (i.e., type-0) grammars using the Lean 3 proof assistant. We defined basic notions of rewrite rules and of words derived by a grammar, and used grammars to show closure of the class of type-0 languages under four operations: union, reversal, concatenation, and the Kleene star. The literature mostly focuses on Turing machine arguments, which are possibly more difficult to formalize. For the Kleene star, we could not follow the literature and came up with our own grammar-based construction. AU - Dvorak, Martin AU - Blanchette, Jasmin ID - 13120 SN - 9783959772846 T2 - 14th International Conference on Interactive Theorem Proving TI - Closure properties of general grammars - formally verified VL - 268 ER - TY - CONF AB - We consider the problem of solving LP relaxations of MAP-MRF inference problems, and in particular the method proposed recently in [16], [35]. As a key computational subroutine, it uses a variant of the Frank-Wolfe (FW) method to minimize a smooth convex function over a combinatorial polytope. We propose an efficient implementation of this subroutine based on in-face Frank-Wolfe directions, introduced in [4] in a different context. More generally, we define an abstract data structure for a combinatorial subproblem that enables in-face FW directions, and describe its specialization for tree-structured MAP-MRF inference subproblems. Experimental results indicate that the resulting method is the current state-of-art LP solver for some classes of problems. Our code is available at pub.ist.ac.at/~vnk/papers/IN-FACE-FW.html. AU - Kolmogorov, Vladimir ID - 14448 SN - 1063-6919 T2 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition TI - Solving relaxations of MAP-MRF problems: Combinatorial in-face Frank-Wolfe directions VL - 2023 ER - TY - JOUR AB - We consider two models for the sequence labeling (tagging) problem. The first one is a Pattern-Based Conditional Random Field (PB), in which the energy of a string (chain labeling) x=x1⁢…⁢xn∈Dn is a sum of terms over intervals [i,j] where each term is non-zero only if the substring xi⁢…⁢xj equals a prespecified word w∈Λ. The second model is a Weighted Context-Free Grammar (WCFG) frequently used for natural language processing. PB and WCFG encode local and non-local interactions respectively, and thus can be viewed as complementary. We propose a Grammatical Pattern-Based CRF model (GPB) that combines the two in a natural way. We argue that it has certain advantages over existing approaches such as the Hybrid model of Benedí and Sanchez that combines N-grams and WCFGs. The focus of this paper is to analyze the complexity of inference tasks in a GPB such as computing MAP. We present a polynomial-time algorithm for general GPBs and a faster version for a special case that we call Interaction Grammars. AU - Takhanov, Rustem AU - Kolmogorov, Vladimir ID - 10737 IS - 1 JF - Intelligent Data Analysis SN - 1088-467X TI - Combining pattern-based CRFs and weighted context-free grammars VL - 26 ER - TY - JOUR AB - Weak convergence of inertial iterative method for solving variational inequalities is the focus of this paper. The cost function is assumed to be non-Lipschitz and monotone. We propose a projection-type method with inertial terms and give weak convergence analysis under appropriate conditions. Some test results are performed and compared with relevant methods in the literature to show the efficiency and advantages given by our proposed methods. AU - Shehu, Yekini AU - Iyiola, Olaniyi S. ID - 7577 IS - 1 JF - Applicable Analysis SN - 0003-6811 TI - Weak convergence for variational inequalities with inertial-type method VL - 101 ER - TY - CONF AB - The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs. AU - Harris, David G. AU - Iliopoulos, Fotis AU - Kolmogorov, Vladimir ID - 10072 SN - 1868-8969 T2 - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques TI - A new notion of commutativity for the algorithmic Lovász Local Lemma VL - 207 ER - TY - CONF AB - We study a class of convex-concave saddle-point problems of the form minxmaxy⟨Kx,y⟩+fP(x)−h∗(y) where K is a linear operator, fP is the sum of a convex function f with a Lipschitz-continuous gradient and the indicator function of a bounded convex polytope P, and h∗ is a convex (possibly nonsmooth) function. Such problem arises, for example, as a Lagrangian relaxation of various discrete optimization problems. Our main assumptions are the existence of an efficient linear minimization oracle (lmo) for fP and an efficient proximal map for h∗ which motivate the solution via a blend of proximal primal-dual algorithms and Frank-Wolfe algorithms. In case h∗ is the indicator function of a linear constraint and function f is quadratic, we show a O(1/n2) convergence rate on the dual objective, requiring O(nlogn) calls of lmo. If the problem comes from the constrained optimization problem minx∈Rd{fP(x)|Ax−b=0} then we additionally get bound O(1/n2) both on the primal gap and on the infeasibility gap. In the most general case, we show a O(1/n) convergence rate of the primal-dual gap again requiring O(nlogn) calls of lmo. To the best of our knowledge, this improves on the known convergence rates for the considered class of saddle-point problems. We show applications to labeling problems frequently appearing in machine learning and computer vision. AU - Kolmogorov, Vladimir AU - Pock, Thomas ID - 10552 T2 - 38th International Conference on Machine Learning TI - One-sided Frank-Wolfe algorithms for saddle problems ER - TY - CONF AB - The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight over all points that they obtain. We restrict the setting to the case of binary weights. We show a construction of an arbitrarily large odd-sized point set that allows Bob to obtain almost 3/4 of the total weight. This construction answers a question asked by Matsumoto, Nakamigawa, and Sakuma in [Graphs and Combinatorics, 36/1 (2020)]. We also present an arbitrarily large even-sized point set where Bob can obtain the entirety of the total weight. Finally, we discuss conjectures about optimum moves in the convex grabbing game for both players in general. AU - Dvorak, Martin AU - Nicholson, Sara ID - 9592 KW - convex grabbing game KW - graph grabbing game KW - combinatorial game KW - convex geometry T2 - Proceedings of the 33rd Canadian Conference on Computational Geometry TI - Massively winning configurations in the convex grabbing game on the plane ER - TY - JOUR AB - In this paper, we consider reflected three-operator splitting methods for monotone inclusion problems in real Hilbert spaces. To do this, we first obtain weak convergence analysis and nonasymptotic O(1/n) convergence rate of the reflected Krasnosel'skiĭ-Mann iteration for finding a fixed point of nonexpansive mapping in real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. We then apply our results to three-operator splitting for the monotone inclusion problem and consequently obtain the corresponding convergence analysis. Furthermore, we derive reflected primal-dual algorithms for highly structured monotone inclusion problems. Some numerical implementations are drawn from splitting methods to support the theoretical analysis. AU - Iyiola, Olaniyi S. AU - Enyi, Cyril D. AU - Shehu, Yekini ID - 9469 JF - Optimization Methods and Software SN - 1055-6788 TI - Reflected three-operator splitting method for monotone inclusion problem ER - TY - JOUR AB - In this paper, we present two new inertial projection-type methods for solving multivalued variational inequality problems in finite-dimensional spaces. We establish the convergence of the sequence generated by these methods when the multivalued mapping associated with the problem is only required to be locally bounded without any monotonicity assumption. Furthermore, the inertial techniques that we employ in this paper are quite different from the ones used in most papers. Moreover, based on the weaker assumptions on the inertial factor in our methods, we derive several special cases of our methods. Finally, we present some experimental results to illustrate the profits that we gain by introducing the inertial extrapolation steps. AU - Izuchukwu, Chinedu AU - Shehu, Yekini ID - 9234 IS - 2 JF - Networks and Spatial Economics KW - Computer Networks and Communications KW - Software KW - Artificial Intelligence SN - 1566-113X TI - New inertial projection methods for solving multivalued variational inequality problems beyond monotonicity VL - 21 ER - TY - CONF AB - In the multiway cut problem we are given a weighted undirected graph G=(V,E) and a set T⊆V of k terminals. The goal is to find a minimum weight set of edges E′⊆E with the property that by removing E′ from G all the terminals become disconnected. In this paper we present a simple local search approximation algorithm for the multiway cut problem with approximation ratio 2−2k . We present an experimental evaluation of the performance of our local search algorithm and show that it greatly outperforms the isolation heuristic of Dalhaus et al. and it has similar performance as the much more complex algorithms of Calinescu et al., Sharma and Vondrak, and Buchbinder et al. which have the currently best known approximation ratios for this problem. AU - Bloch-Hansen, Andrew AU - Samei, Nasim AU - Solis-Oba, Roberto ID - 9227 SN - 0302-9743 T2 - Conference on Algorithms and Discrete Applied Mathematics TI - Experimental evaluation of a local search approximation algorithm for the multiway cut problem VL - 12601 ER - TY - JOUR AB - The paper introduces an inertial extragradient subgradient method with self-adaptive step sizes for solving equilibrium problems in real Hilbert spaces. Weak convergence of the proposed method is obtained under the condition that the bifunction is pseudomonotone and Lipchitz continuous. Linear convergence is also given when the bifunction is strongly pseudomonotone and Lipchitz continuous. Numerical implementations and comparisons with other related inertial methods are given using test problems including a real-world application to Nash–Cournot oligopolistic electricity market equilibrium model. AU - Shehu, Yekini AU - Iyiola, Olaniyi S. AU - Thong, Duong Viet AU - Van, Nguyen Thi Cam ID - 8817 IS - 2 JF - Mathematical Methods of Operations Research SN - 1432-2994 TI - An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems VL - 93 ER - TY - JOUR AB - We consider inertial iteration methods for Fermat–Weber location problem and primal–dual three-operator splitting in real Hilbert spaces. To do these, we first obtain weak convergence analysis and nonasymptotic O(1/n) convergence rate of the inertial Krasnoselskii–Mann iteration for fixed point of nonexpansive operators in infinite dimensional real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. One of our contributions is that the convergence analysis and rate of convergence results are obtained using conditions which appear not complicated and restrictive as assumed in other previous related results in the literature. We then show that Fermat–Weber location problem and primal–dual three-operator splitting are special cases of fixed point problem of nonexpansive mapping and consequently obtain the convergence analysis of inertial iteration methods for Fermat–Weber location problem and primal–dual three-operator splitting in real Hilbert spaces. Some numerical implementations are drawn from primal–dual three-operator splitting to support the theoretical analysis. AU - Iyiola, Olaniyi S. AU - Shehu, Yekini ID - 9315 IS - 2 JF - Results in Mathematics SN - 1422-6383 TI - New convergence results for inertial Krasnoselskii–Mann iterations in Hilbert spaces with applications VL - 76 ER - TY - JOUR AB - In this paper, we propose a new iterative method with alternated inertial step for solving split common null point problem in real Hilbert spaces. We obtain weak convergence of the proposed iterative algorithm. Furthermore, we introduce the notion of bounded linear regularity property for the split common null point problem and obtain the linear convergence property for the new algorithm under some mild assumptions. Finally, we provide some numerical examples to demonstrate the performance and efficiency of the proposed method. AU - Ogbuisi, Ferdinard U. AU - Shehu, Yekini AU - Yao, Jen Chih ID - 9365 JF - Optimization SN - 0233-1934 TI - Convergence analysis of new inertial method for the split common null point problem ER - TY - JOUR AB - This paper aims to obtain a strong convergence result for a Douglas–Rachford splitting method with inertial extrapolation step for finding a zero of the sum of two set-valued maximal monotone operators without any further assumption of uniform monotonicity on any of the involved maximal monotone operators. Furthermore, our proposed method is easy to implement and the inertial factor in our proposed method is a natural choice. Our method of proof is of independent interest. Finally, some numerical implementations are given to confirm the theoretical analysis. AU - Shehu, Yekini AU - Dong, Qiao-Li AU - Liu, Lu-Lu AU - Yao, Jen-Chih ID - 8196 JF - Optimization and Engineering SN - 1389-4420 TI - New strong convergence method for the sum of two maximal monotone operators VL - 22 ER - TY - JOUR AB - In this paper, we introduce a relaxed CQ method with alternated inertial step for solving split feasibility problems. We give convergence of the sequence generated by our method under some suitable assumptions. Some numerical implementations from sparse signal and image deblurring are reported to show the efficiency of our method. AU - Shehu, Yekini AU - Gibali, Aviv ID - 7925 JF - Optimization Letters SN - 1862-4472 TI - New inertial relaxed method for solving split feasibilities VL - 15 ER - TY - JOUR AB - We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising. AU - Shehu, Yekini AU - Li, Xiao-Huan AU - Dong, Qiao-Li ID - 6593 JF - Numerical Algorithms SN - 1017-1398 TI - An efficient projection-type method for monotone variational inequalities in Hilbert spaces VL - 84 ER - TY - JOUR AB - The projection methods with vanilla inertial extrapolation step for variational inequalities have been of interest to many authors recently due to the improved convergence speed contributed by the presence of inertial extrapolation step. However, it is discovered that these projection methods with inertial steps lose the Fejér monotonicity of the iterates with respect to the solution, which is being enjoyed by their corresponding non-inertial projection methods for variational inequalities. This lack of Fejér monotonicity makes projection methods with vanilla inertial extrapolation step for variational inequalities not to converge faster than their corresponding non-inertial projection methods at times. Also, it has recently been proved that the projection methods with vanilla inertial extrapolation step may provide convergence rates that are worse than the classical projected gradient methods for strongly convex functions. In this paper, we introduce projection methods with alternated inertial extrapolation step for solving variational inequalities. We show that the sequence of iterates generated by our methods converges weakly to a solution of the variational inequality under some appropriate conditions. The Fejér monotonicity of even subsequence is recovered in these methods and linear rate of convergence is obtained. The numerical implementations of our methods compared with some other inertial projection methods show that our method is more efficient and outperforms some of these inertial projection methods. AU - Shehu, Yekini AU - Iyiola, Olaniyi S. ID - 8077 JF - Applied Numerical Mathematics SN - 0168-9274 TI - Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence VL - 157 ER - TY - JOUR AB - In this paper, we introduce an inertial projection-type method with different updating strategies for solving quasi-variational inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions, we establish different strong convergence results for the proposed algorithm. Primary numerical experiments demonstrate the potential applicability of our scheme compared with some related methods in the literature. AU - Shehu, Yekini AU - Gibali, Aviv AU - Sagratella, Simone ID - 7161 JF - Journal of Optimization Theory and Applications SN - 0022-3239 TI - Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces VL - 184 ER -