TY - CONF
AB - The accuracy of information retrieval systems is often measured using complex loss functions such as the average precision (AP) or the normalized discounted cumulative gain (NDCG). Given a set of positive and negative samples, the parameters of a retrieval system can be estimated by minimizing these loss functions. However, the non-differentiability and non-decomposability of these loss functions does not allow for simple gradient based optimization algorithms. This issue is generally circumvented by either optimizing a structured hinge-loss upper bound to the loss function or by using asymptotic methods like the direct-loss minimization framework. Yet, the high computational complexity of loss-augmented inference, which is necessary for both the frameworks, prohibits its use in large training data sets. To alleviate this deficiency, we present a novel quicksort flavored algorithm for a large class of non-decomposable loss functions. We provide a complete characterization of the loss functions that are amenable to our algorithm, and show that it includes both AP and NDCG based loss functions. Furthermore, we prove that no comparison based algorithm can improve upon the computational complexity of our approach asymptotically. We demonstrate the effectiveness of our approach in the context of optimizing the structured hinge loss upper bound of AP and NDCG loss for learning models for a variety of vision tasks. We show that our approach provides significantly better results than simpler decomposable loss functions, while requiring a comparable training time.
AU - Mohapatra, Pritish
AU - Rolinek, Michal
AU - Jawahar, C V
AU - Kolmogorov, Vladimir
AU - Kumar, M Pawan
ID - 273
SN - 9781538664209
T2 - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
TI - Efficient optimization for rank-based loss functions
ER -
TY - JOUR
AB - We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision.
AU - Shekhovtsov, Alexander
AU - Swoboda, Paul
AU - Savchynskyy, Bogdan
ID - 703
IS - 7
JF - IEEE Transactions on Pattern Analysis and Machine Intelligence
SN - 01628828
TI - Maximum persistency via iterative relaxed inference with graphical models
VL - 40
ER -
TY - JOUR
AB - An N-superconcentrator is a directed, acyclic graph with N input nodes and N output nodes such that every subset of the inputs and every subset of the outputs of same cardinality can be connected by node-disjoint paths. It is known that linear-size and bounded-degree superconcentrators exist. We prove the existence of such superconcentrators with asymptotic density 25.3 (where the density is the number of edges divided by N). The previously best known densities were 28 [12] and 27.4136 [17].
AU - Kolmogorov, Vladimir
AU - Rolinek, Michal
ID - 18
IS - 10
JF - Ars Combinatoria
SN - 0381-7032
TI - Superconcentrators of density 25.3
VL - 141
ER -
TY - CONF
AB - We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.
AU - Alwen, Joel F
AU - Gazi, Peter
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Osang, Georg F
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Lenoid
AU - Rolinek, Michal
AU - Rybar, Michal
ID - 193
T2 - Proceedings of the 2018 on Asia Conference on Computer and Communication Security
TI - On the memory hardness of data independent password hashing functions
ER -
TY - CONF
AB - We consider the MAP-inference problem for graphical models,which is a valued constraint satisfaction problem defined onreal numbers with a natural summation operation. We proposea family of relaxations (different from the famous Sherali-Adams hierarchy), which naturally define lower bounds for itsoptimum. This family always contains a tight relaxation andwe give an algorithm able to find it and therefore, solve theinitial non-relaxed NP-hard problem.The relaxations we consider decompose the original probleminto two non-overlapping parts: an easy LP-tight part and adifficult one. For the latter part a combinatorial solver must beused. As we show in our experiments, in a number of applica-tions the second, difficult part constitutes only a small fractionof the whole problem. This property allows to significantlyreduce the computational time of the combinatorial solver andtherefore solve problems which were out of reach before.
AU - Haller, Stefan
AU - Swoboda, Paul
AU - Savchynskyy, Bogdan
ID - 5978
T2 - Proceedings of the 32st AAAI Conference on Artificial Intelligence
TI - Exact MAP-inference by confining combinatorial search with LP relaxation
ER -