TY - CONF
AB - Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system. In this work, we put forward an alternative concept for PoWs - so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model (with one additional mild assumption required for the proof to go through), using graphs with high “pebbling complexity” and Merkle hash-trees. We discuss some applications, including follow-up work where a decentralized digital currency scheme called Spacecoin is constructed that uses PoS (instead of wasteful PoW like in Bitcoin) to prevent double spending. The main technical contribution of this work is the construction of (directed, loop-free) graphs on N vertices with in-degree O(log logN) such that even if one places Θ(N) pebbles on the nodes of the graph, there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled (where in every step one can put a pebble on a node if all its parents have a pebble).
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
ID - 1675
TI - Proofs of space
VL - 9216
ER -
TY - JOUR
AB - We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diffusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. The new family of algorithms can be viewed as a generalization of TRW-S from pairwise to higher-order graphical models. We test SRMP on several real-world problems with promising results.
AU - Kolmogorov, Vladimir
ID - 1841
IS - 5
JF - IEEE Transactions on Pattern Analysis and Machine Intelligence
TI - A new look at reweighted message passing
VL - 37
ER -
TY - CONF
AB - Structural support vector machines (SSVMs) are amongst the best performing models for structured computer vision tasks, such as semantic image segmentation or human pose estimation. Training SSVMs, however, is computationally costly, because it requires repeated calls to a structured prediction subroutine (called \emph{max-oracle}), which has to solve an optimization problem itself, e.g. a graph cut.
In this work, we introduce a new algorithm for SSVM training that is more efficient than earlier techniques when the max-oracle is computationally expensive, as it is frequently the case in computer vision tasks. The main idea is to (i) combine the recent stochastic Block-Coordinate Frank-Wolfe algorithm with efficient hyperplane caching, and (ii) use an automatic selection rule for deciding whether to call the exact max-oracle or to rely on an approximate one based on the cached hyperplanes.
We show experimentally that this strategy leads to faster convergence to the optimum with respect to the number of requires oracle calls, and that this translates into faster convergence with respect to the total runtime when the max-oracle is slow compared to the other steps of the algorithm.
AU - Shah, Neel
AU - Kolmogorov, Vladimir
AU - Lampert, Christoph
ID - 1859
TI - A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle
ER -
TY - CONF
AB - Energies with high-order non-submodular interactions have been shown to be very useful in vision due to their high modeling power. Optimization of such energies, however, is generally NP-hard. A naive approach that works for small problem instances is exhaustive search, that is, enumeration of all possible labelings of the underlying graph. We propose a general minimization approach for large graphs based on enumeration of labelings of certain small patches.
This partial enumeration technique reduces complex high-order energy formulations to pairwise Constraint Satisfaction Problems with unary costs (uCSP), which can be efficiently solved using standard methods like TRW-S. Our approach outperforms a number of existing state-of-the-art algorithms on well known difficult problems (e.g. curvature regularization, stereo, deconvolution); it gives near global minimum and better speed.
Our main application of interest is curvature regularization. In the context of segmentation, our partial enumeration technique allows to evaluate curvature directly on small patches using a novel integral geometry approach.
AU - Olsson, Carl
AU - Ulen, Johannes
AU - Boykov, Yuri
AU - Kolmogorov, Vladimir
ID - 2275
TI - Partial enumeration and curvature regularization
ER -
TY - GEN
AU - Huszár, Kristóf
AU - Rolinek, Michal
ID - 7038
TI - Playful Math - An introduction to mathematical games
ER -
TY - CONF
AB - Representation languages for coalitional games are a key research area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it to capture more elaborate games, and how hard it is computationally to optimize and solve such games. One prominent such language is the simple yet expressive
Weighted Graph Games (WGGs) representation (Deng and Papadimitriou 1994), which maintains knowledge about synergies between agents in the form of an edge weighted graph. We consider the problem of finding the optimal coalition structure in WGGs. The agents in such games are vertices in a graph, and the value of a coalition is the sum of the weights of the edges present between coalition members. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that finding the optimal coalition structure is not only hard for general graphs, but is also intractable for restricted families such as planar graphs which are amenable for many other combinatorial problems. We then provide algorithms with constant factor approximations for planar, minorfree and bounded degree graphs.
AU - Bachrach, Yoram
AU - Kohli, Pushmeet
AU - Kolmogorov, Vladimir
AU - Zadimoghaddam, Morteza
ID - 2270
TI - Optimal Coalition Structures in Cooperative Graph Games
ER -
TY - CONF
AB - We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case.
AU - Takhanov, Rustem
AU - Kolmogorov, Vladimir
ID - 2272
IS - 3
T2 - ICML'13 Proceedings of the 30th International Conference on International
TI - Inference algorithms for pattern-based CRFs on sequence data
VL - 28
ER -
TY - GEN
AB - We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.
AU - Vladimir Kolmogorov
ID - 2273
TI - Reweighted message passing revisited
ER -
TY - GEN
AB - Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees.
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
ID - 2274
TI - Proofs of Space
ER -
TY - CONF
AB - The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.
AU - Gridchyn, Igor
AU - Kolmogorov, Vladimir
ID - 2276
TI - Potts model, parametric maxflow and k-submodular functions
ER -