TY - CONF
AB - We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers.
AU - Swoboda, Paul
AU - Kuske, Jan
AU - Savchynskyy, Bogdan
ID - 917
SN - 978-153860457-1
TI - A dual ascent framework for Lagrangean decomposition of combinatorial problems
VL - 2017
ER -
TY - THES
AB - An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of
variables, a finite domain of labels, and a set of constraints, each constraint acting on
a subset of the variables. The goal is to find an assignment of labels to its variables
that satisfies all constraints (or decide whether one exists). If we allow more general
“soft” constraints, which come with (possibly infinite) costs of particular assignments,
we obtain instances from a richer class called Valued Constraint Satisfaction Problem
(VCSP). There the goal is to find an assignment with minimum total cost.
In this thesis, we focus (assuming that P
6
=
NP) on classifying computational com-
plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core
content of the work. In one of them, we consider VCSPs parametrized by a constraint
language, that is the set of “soft” constraints allowed to form the instances, and finish
the complexity classification modulo (missing pieces of) complexity classification for
analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect
matching algorithm. This generalization contributes to complexity classfications in two
ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean
CSPs in which every variable may appear in at most two constraints and second, it
settles full classification of Boolean CSPs with planar drawing (again parametrized by a
constraint language).
AU - Rolinek, Michal
ID - 992
TI - Complexity of constraint satisfaction
ER -
TY - JOUR
AB - We consider Conditional random fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) (Formula presented.) is the sum of terms over intervals [i, j] where each term is non-zero only if the substring (Formula presented.) equals a prespecified pattern w. Such CRFs can be naturally applied to many sequence tagging problems. We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.) where L is the combined length of input patterns, (Formula presented.) is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of Ye et al. (NIPS, 2009) whose complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.), where (Formula presented.) is the number of input patterns. In addition, we give an efficient algorithm for sampling, and revisit the case of MAP with non-positive weights.
AU - Kolmogorov, Vladimir
AU - Takhanov, Rustem
ID - 1794
IS - 1
JF - Algorithmica
TI - Inference algorithms for pattern-based CRFs on sequence data
VL - 76
ER -
TY - DATA
AB - Small synthetic discrete tomography problems.
Sizes are 32x32, 64z64 and 256x256.
Projection angles are 2, 4, and 6.
Number of labels are 3 and 5.
AU - Swoboda, Paul
ID - 5557
KW - discrete tomography
TI - Synthetic discrete tomography problems
ER -
TY - JOUR
AB - We characterize absorption in finite idempotent algebras by means of Jónsson absorption and cube term blockers. As an application we show that it is decidable whether a given subset is an absorbing subuniverse of an algebra given by the tables of its basic operations.
AU - Barto, Libor
AU - Kazda, Alexandr
ID - 1353
IS - 5
JF - International Journal of Algebra and Computation
TI - Deciding absorption
VL - 26
ER -
TY - JOUR
AB - We consider the problem of minimizing the continuous valued total variation subject to different unary terms on trees and propose fast direct algorithms based on dynamic programming to solve these problems. We treat both the convex and the nonconvex case and derive worst-case complexities that are equal to or better than existing methods. We show applications to total variation based two dimensional image processing and computer vision problems based on a Lagrangian decomposition approach. The resulting algorithms are very effcient, offer a high degree of parallelism, and come along with memory requirements which are only in the order of the number of image pixels.
AU - Kolmogorov, Vladimir
AU - Pock, Thomas
AU - Rolinek, Michal
ID - 1377
IS - 2
JF - SIAM Journal on Imaging Sciences
TI - Total variation on a tree
VL - 9
ER -
TY - JOUR
AB - We prove that whenever A is a 3-conservative relational structure with only binary and unary relations,then the algebra of polymorphisms of A either has no Taylor operation (i.e.,CSP(A)is NP-complete),or it generates an SD(∧) variety (i.e.,CSP(A)has bounded width).
AU - Kazda, Alexandr
ID - 1612
IS - 1
JF - Algebra Universalis
TI - CSP for binary conservative relational structures
VL - 75
ER -
TY - CONF
AB - We consider the recent formulation of the Algorithmic Lovász Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.
AU - Kolmogorov, Vladimir
ID - 1193
T2 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science
TI - Commutativity in the algorithmic Lovasz local lemma
VL - 2016-December
ER -
TY - CONF
AB - We study the time-and memory-complexities of the problem of computing labels of (multiple) randomly selected challenge-nodes in a directed acyclic graph. The w-bit label of a node is the hash of the labels of its parents, and the hash function is modeled as a random oracle. Specific instances of this problem underlie both proofs of space [Dziembowski et al. CRYPTO’15] as well as popular memory-hard functions like scrypt. As our main tool, we introduce the new notion of a probabilistic parallel entangled pebbling game, a new type of combinatorial pebbling game on a graph, which is closely related to the labeling game on the same graph. As a first application of our framework, we prove that for scrypt, when the underlying hash function is invoked n times, the cumulative memory complexity (CMC) (a notion recently introduced by Alwen and Serbinenko (STOC’15) to capture amortized memory-hardness for parallel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof. We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound for scrypt to hold against arbitrary adversaries. We also show that such an upper bound solves the main open problem for proofs-of-space protocols: namely, establishing that the time complexity of computing the label of a random node in a graph on n nodes (given an initial kw-bit state) reduces tightly to the time complexity for black pebbling on the same graph (given an initial k-node pebbling).
AU - Alwen, Joel F
AU - Chen, Binyi
AU - Kamath Hosdurg, Chethan
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
AU - Tessaro, Stefano
ID - 1231
TI - On the complexity of scrypt and proofs of space in the parallel random oracle model
VL - 9666
ER -
TY - JOUR
AB - A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. Finite-valued constraint languages contain functions that take on rational costs and general-valued constraint languages contain functions that take on rational or infinite costs. An instance of the problem is specified by a sum of functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs).
Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a general-valued constraint language Γ, BLP is a decision procedure for Γ if and only if Γ admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ, BLP is a decision procedure if and only if Γ admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ admits a symmetric fractional polymorphism of arity 2.
Using these results, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.
AU - Kolmogorov, Vladimir
AU - Thapper, Johan
AU - Živný, Stanislav
ID - 2271
IS - 1
JF - SIAM Journal on Computing
TI - The power of linear programming for general-valued CSPs
VL - 44
ER -