@article{644,
abstract = {An instance of the valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P 6= NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in f0;1g corresponds to ordinary CSPs, where one deals only with the feasibility issue, and there is no optimization. This case is the subject of the algebraic CSP dichotomy conjecture predicting for which constraint languages CSPs are tractable (i.e., solvable in polynomial time) and for which they are NP-hard. The case when all allowed functions take only finite values corresponds to a finitevalued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e., the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.},
author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal},
journal = {SIAM Journal on Computing},
number = {3},
pages = {1087 -- 1110},
publisher = {SIAM},
title = {{The complexity of general-valued CSPs}},
doi = {10.1137/16M1091836},
volume = {46},
year = {2017},
}
@inproceedings{646,
abstract = {We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations.},
author = {Kuske, Jan and Swoboda, Paul and Petra, Stefanie},
editor = {Lauze, François and Dong, Yiqiu and Bjorholm Dahl, Anders},
isbn = {978-331958770-7},
location = {Kolding, Denmark},
pages = {235 -- 246},
publisher = {Springer},
title = {{A novel convex relaxation for non binary discrete tomography}},
doi = {10.1007/978-3-319-58771-4_19},
volume = {10302},
year = {2017},
}
@inproceedings{1192,
abstract = {The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Knowing that edge CSP is tractable for even Δ-matroid constraints allows us to extend the tractability result to a larger class of Δ-matroids that includes many classes that were known to be tractable before, namely co-independent, compact, local and binary.},
author = {Kazda, Alexandr and Kolmogorov, Vladimir and Rolinek, Michal},
isbn = {978-161197478-2},
location = {Barcelona, Spain},
pages = {307 -- 326},
publisher = {SIAM},
title = {{Even delta-matroids and the complexity of planar Boolean CSPs}},
doi = {10.1137/1.9781611974782.20},
year = {2017},
}
@inproceedings{915,
abstract = {We propose a dual decomposition and linear program relaxation of the NP-hard minimum cost multicut problem. Unlike other polyhedral relaxations of the multicut polytope, it is amenable to efficient optimization by message passing. Like other polyhedral relaxations, it can be tightened efficiently by cutting planes. We define an algorithm that alternates between message passing and efficient separation of cycle- and odd-wheel inequalities. This algorithm is more efficient than state-of-the-art algorithms based on linear programming, including algorithms written in the framework of leading commercial software, as we show in experiments with large instances of the problem from applications in computer vision, biomedical image analysis and data mining.},
author = {Swoboda, Paul and Andres, Bjoern},
isbn = {978-153860457-1},
location = {Honolulu, HA, United States},
pages = {4990--4999},
publisher = {IEEE},
title = {{A message passing algorithm for the minimum cost multicut problem}},
doi = {10.1109/CVPR.2017.530},
volume = {2017},
year = {2017},
}
@inproceedings{916,
abstract = {We study the quadratic assignment problem, in computer vision also known as graph matching. Two leading solvers for this problem optimize the Lagrange decomposition duals with sub-gradient and dual ascent (also known as message passing) updates. We explore this direction further and propose several additional Lagrangean relaxations of the graph matching problem along with corresponding algorithms, which are all based on a common dual ascent framework. Our extensive empirical evaluation gives several theoretical insights and suggests a new state-of-the-art anytime solver for the considered problem. Our improvement over state-of-the-art is particularly visible on a new dataset with large-scale sparse problem instances containing more than 500 graph nodes each.},
author = {Swoboda, Paul and Rother, Carsten and Abu Alhaija, Carsten and Kainmueller, Dagmar and Savchynskyy, Bogdan},
isbn = {978-153860457-1},
location = {Honolulu, HA, United States},
pages = {7062--7071},
publisher = {IEEE},
title = {{A study of lagrangean decompositions and dual ascent solvers for graph matching}},
doi = {10.1109/CVPR.2017.747},
volume = {2017},
year = {2017},
}