@article{7577,
abstract = {Weak convergence of inertial iterative method for solving variational inequalities is the focus of this paper. The cost function is assumed to be non-Lipschitz and monotone. We propose a projection-type method with inertial terms and give weak convergence analysis under appropriate conditions. Some test results are performed and compared with relevant methods in the literature to show the efficiency and advantages given by our proposed methods.},
author = {Shehu, Yekini and Iyiola, Olaniyi S.},
issn = {1563-504X},
journal = {Applicable Analysis},
pages = {1--25},
publisher = {Taylor & Francis},
title = {{Weak convergence for variational inequalities with inertial-type method}},
doi = {10.1080/00036811.2020.1736287},
year = {2020},
}
@article{6596,
abstract = {It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper.},
author = {Shehu, Yekini},
issn = {1420-9012},
journal = {Results in Mathematics},
number = {4},
publisher = {Springer},
title = {{Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces}},
doi = {10.1007/s00025-019-1061-4},
volume = {74},
year = {2019},
}
@article{7412,
abstract = {We develop a framework for the rigorous analysis of focused stochastic local search algorithms. These algorithms search a state space by repeatedly selecting some constraint that is violated in the current state and moving to a random nearby state that addresses the violation, while (we hope) not introducing many new violations. An important class of focused local search algorithms with provable performance guarantees has recently arisen from algorithmizations of the Lovász local lemma (LLL), a nonconstructive tool for proving the existence of satisfying states by introducing a background measure on the state space. While powerful, the state transitions of algorithms in this class must be, in a precise sense, perfectly compatible with the background measure. In many applications this is a very restrictive requirement, and one needs to step outside the class. Here we introduce the notion of measure distortion and develop a framework for analyzing arbitrary focused stochastic local search algorithms, recovering LLL algorithmizations as the special case of no distortion. Our framework takes as input an arbitrary algorithm of such type and an arbitrary probability measure and shows how to use the measure as a yardstick of algorithmic progress, even for algorithms designed independently of the measure.},
author = {Achlioptas, Dimitris and Iliopoulos, Fotis and Kolmogorov, Vladimir},
issn = {1095-7111},
journal = {SIAM Journal on Computing},
number = {5},
pages = {1583--1602},
publisher = {SIAM},
title = {{A local lemma for focused stochastical algorithms}},
doi = {10.1137/16m109332x},
volume = {48},
year = {2019},
}
@inproceedings{6725,
abstract = {A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables, a finite domain of labels, and an objective function to be minimized. This function is represented as a sum of terms where each term depends on a subset of the variables. To obtain different classes of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions, called a language.
Recent breakthrough results have established a complete complexity classification of such classes with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately, testing this condition for a given language Γ is known to be NP-hard. We thus study exponential algorithms for this meta-problem. We show that the tractability condition of a finite-valued language Γ can be tested in O(3‾√3|D|⋅poly(size(Γ))) time, where D is the domain of Γ and poly(⋅) is some fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time Hypothesis (SETH). More precisely, we prove that for any constant δ<1 there is no O(3‾√3δ|D|) algorithm, assuming that SETH holds.},
author = {Kolmogorov, Vladimir},
booktitle = {46th International Colloquium on Automata, Languages and Programming},
isbn = {978-3-95977-109-2},
issn = {1868-8969},
location = {Patras, Greece},
pages = {77:1--77:12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Testing the complexity of a valued CSP language}},
doi = {10.4230/LIPICS.ICALP.2019.77},
volume = {132},
year = {2019},
}
@inproceedings{7468,
abstract = {We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems.},
author = {Swoboda, Paul and Kolmogorov, Vladimir},
booktitle = {Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
isbn = {9781728132938},
issn = {10636919},
location = {Long Beach, CA, United States},
publisher = {IEEE},
title = {{Map inference via block-coordinate Frank-Wolfe algorithm}},
doi = {10.1109/CVPR.2019.01140},
volume = {2019-June},
year = {2019},
}