@article{6596,
abstract = {It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper.},
author = {Shehu, Yekini},
issn = {1420-9012},
journal = {Results in Mathematics},
number = {4},
publisher = {Springer},
title = {{Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces}},
doi = {10.1007/s00025-019-1061-4},
volume = {74},
year = {2019},
}
@inproceedings{6725,
abstract = {A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables, a finite domain of labels, and an objective function to be minimized. This function is represented as a sum of terms where each term depends on a subset of the variables. To obtain different classes of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions, called a language.
Recent breakthrough results have established a complete complexity classification of such classes with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately, testing this condition for a given language Γ is known to be NP-hard. We thus study exponential algorithms for this meta-problem. We show that the tractability condition of a finite-valued language Γ can be tested in O(3‾√3|D|⋅poly(size(Γ))) time, where D is the domain of Γ and poly(⋅) is some fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time Hypothesis (SETH). More precisely, we prove that for any constant δ<1 there is no O(3‾√3δ|D|) algorithm, assuming that SETH holds.},
author = {Kolmogorov, Vladimir},
booktitle = {46th International Colloquium on Automata, Languages and Programming},
isbn = {978-3-95977-109-2},
issn = {1868-8969},
location = {Patras, Greece},
pages = {77:1--77:12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Testing the complexity of a valued CSP language}},
doi = {10.4230/LIPICS.ICALP.2019.77},
volume = {132},
year = {2019},
}
@article{6593,
abstract = {We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.},
author = {Shehu, Yekini and Li, Xiao-Huan and Dong, Qiao-Li},
issn = {1017-1398},
journal = {Numerical Algorithms},
pages = {1--24},
publisher = {Springer Nature},
title = {{An efficient projection-type method for monotone variational inequalities in Hilbert spaces}},
doi = {10.1007/s11075-019-00758-y},
year = {2019},
}
@article{6032,
abstract = {The main result of this article is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ-matroids, we then extend the tractability result to larger classes of Δ-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely, co-independent, compact, local, linear, and binary, with the following caveat:We represent Δ-matroids by lists of tuples, while the last two use a representation by matrices. Since an n ×n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ-matroids.},
author = {Kazda, Alexandr and Kolmogorov, Vladimir and Rolinek, Michal},
journal = {ACM Transactions on Algorithms},
number = {2},
publisher = {ACM},
title = {{Even delta-matroids and the complexity of planar boolean CSPs}},
doi = {10.1145/3230649},
volume = {15},
year = {2019},
}
@article{7000,
abstract = {The main contributions of this paper are the proposition and the convergence analysis of a class of inertial projection-type algorithm for solving variational inequality problems in real Hilbert spaces where the underline operator is monotone and uniformly continuous. We carry out a unified analysis of the proposed method under very mild assumptions. In particular, weak convergence of the generated sequence is established and nonasymptotic O(1 / n) rate of convergence is established, where n denotes the iteration counter. We also present some experimental results to illustrate the profits gained by introducing the inertial extrapolation steps.},
author = {Shehu, Yekini and Iyiola, Olaniyi S. and Li, Xiao-Huan and Dong, Qiao-Li},
issn = {1807-0302},
journal = {Computational and Applied Mathematics},
number = {4},
publisher = {Springer Nature},
title = {{Convergence analysis of projection method for variational inequalities}},
doi = {10.1007/s40314-019-0955-9},
volume = {38},
year = {2019},
}
@inproceedings{193,
abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.},
author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal},
booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security},
location = {Incheon, Republic of Korea},
pages = {51 -- 65},
publisher = {ACM},
title = {{On the memory hardness of data independent password hashing functions}},
doi = {10.1145/3196494.3196534},
year = {2018},
}
@inproceedings{5978,
abstract = {We consider the MAP-inference problem for graphical models,which is a valued constraint satisfaction problem defined onreal numbers with a natural summation operation. We proposea family of relaxations (different from the famous Sherali-Adams hierarchy), which naturally define lower bounds for itsoptimum. This family always contains a tight relaxation andwe give an algorithm able to find it and therefore, solve theinitial non-relaxed NP-hard problem.The relaxations we consider decompose the original probleminto two non-overlapping parts: an easy LP-tight part and adifficult one. For the latter part a combinatorial solver must beused. As we show in our experiments, in a number of applica-tions the second, difficult part constitutes only a small fractionof the whole problem. This property allows to significantlyreduce the computational time of the combinatorial solver andtherefore solve problems which were out of reach before.},
author = {Haller, Stefan and Swoboda, Paul and Savchynskyy, Bogdan},
booktitle = {Proceedings of the 32st AAAI Conference on Artificial Intelligence},
location = {New Orleans, LU, United States},
pages = {6581--6588},
publisher = {AAAI},
title = {{Exact MAP-inference by confining combinatorial search with LP relaxation}},
year = {2018},
}
@article{18,
abstract = {An N-superconcentrator is a directed, acyclic graph with N input nodes and N output nodes such that every subset of the inputs and every subset of the outputs of same cardinality can be connected by node-disjoint paths. It is known that linear-size and bounded-degree superconcentrators exist. We prove the existence of such superconcentrators with asymptotic density 25.3 (where the density is the number of edges divided by N). The previously best known densities were 28 [12] and 27.4136 [17].},
author = {Kolmogorov, Vladimir and Rolinek, Michal},
issn = {0381-7032},
journal = {Ars Combinatoria},
number = {10},
pages = {269 -- 304},
publisher = {Charles Babbage Research Centre},
title = {{Superconcentrators of density 25.3}},
volume = {141},
year = {2018},
}
@article{5975,
abstract = {We consider the recent formulation of the algorithmic Lov ́asz Local Lemma [N. Har-vey and J. Vondr ́ak, inProceedings of FOCS, 2015, pp. 1327–1345; D. Achlioptas and F. Iliopoulos,inProceedings of SODA, 2016, pp. 2024–2038; D. Achlioptas, F. Iliopoulos, and V. Kolmogorov,ALocal Lemma for Focused Stochastic Algorithms, arXiv preprint, 2018] for finding objects that avoid“bad features,” or “flaws.” It extends the Moser–Tardos resampling algorithm [R. A. Moser andG. Tardos,J. ACM, 57 (2010), 11] to more general discrete spaces. At each step the method picks aflaw present in the current state and goes to a new state according to some prespecified probabilitydistribution (which depends on the current state and the selected flaw). However, the recent formu-lation is less flexible than the Moser–Tardos method since it requires a specific flaw selection rule,whereas the algorithm of Moser and Tardos allows an arbitrary rule (and thus can potentially beimplemented more efficiently). We formulate a new “commutativity” condition and prove that it issufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additionalassumption. We then show that existing resampling oracles for perfect matchings and permutationsdo satisfy this condition.},
author = {Kolmogorov, Vladimir},
issn = {0097-5397},
journal = {SIAM Journal on Computing},
number = {6},
pages = {2029--2056},
publisher = {Society for Industrial & Applied Mathematics (SIAM)},
title = {{Commutativity in the algorithmic Lovász local lemma}},
doi = {10.1137/16m1093306},
volume = {47},
year = {2018},
}
@article{703,
abstract = {We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision.},
author = {Shekhovtsov, Alexander and Swoboda, Paul and Savchynskyy, Bogdan},
issn = {01628828},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
number = {7},
pages = {1668--1682},
publisher = {IEEE},
title = {{Maximum persistency via iterative relaxed inference with graphical models}},
doi = {10.1109/TPAMI.2017.2730884},
volume = {40},
year = {2018},
}