TY - JOUR AB - We prove the following quantitative Borsuk–Ulam-type result (an equivariant analogue of Gromov’s Topological Overlap Theorem): Let X be a free ℤ/2-complex of dimension d with coboundary expansion at least ηk in dimension 0 ≤ k < d. Then for every equivariant map F: X →ℤ/2 ℝd, the fraction of d-simplices σ of X with 0 ∈ F (σ) is at least 2−d Π d−1k=0ηk. As an application, we show that for every sufficiently thick d-dimensional spherical building Y and every map f: Y → ℝ2d, we have f(σ) ∩ f(τ) ≠ ∅ for a constant fraction μd > 0 of pairs {σ, τ} of d-simplices of Y. In particular, such complexes are non-embeddable into ℝ2d, which proves a conjecture of Tancer and Vorwerk for sufficiently thick spherical buildings. We complement these results by upper bounds on the coboundary expansion of two families of simplicial complexes; this indicates some limitations to the bounds one can obtain by straighforward applications of the quantitative Borsuk–Ulam theorem. Specifically, we prove • an upper bound of (d + 1)/2d on the normalized (d − 1)-th coboundary expansion constant of complete (d + 1)-partite d-dimensional complexes (under a mild divisibility assumption on the sizes of the parts); and • an upper bound of (d + 1)/2d + ε on the normalized (d − 1)-th coboundary expansion of the d-dimensional spherical building associated with GLd+2(Fq) for any ε > 0 and sufficiently large q. This disproves, in a rather strong sense, a conjecture of Lubotzky, Meshulam and Mozes. AU - Wagner, Uli AU - Wild, Pascal ID - 14445 IS - 2 JF - Israel Journal of Mathematics SN - 0021-2172 TI - Coboundary expansion, equivariant overlap, and crossing numbers of simplicial complexes VL - 256 ER - TY - JOUR AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results: 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved. AU - Biniaz, Ahmad AU - Jain, Kshitij AU - Lubiw, Anna AU - Masárová, Zuzana AU - Miltzow, Tillmann AU - Mondal, Debajyoti AU - Naredla, Anurag Murty AU - Tkadlec, Josef AU - Turcotte, Alexi ID - 12833 IS - 2 JF - Discrete Mathematics and Theoretical Computer Science SN - 1462-7264 TI - Token swapping on trees VL - 24 ER - TY - JOUR AB - John’s fundamental theorem characterizing the largest volume ellipsoid contained in a convex body $K$ in $\mathbb{R}^{d}$ has seen several generalizations and extensions. One direction, initiated by V. Milman is to replace ellipsoids by positions (affine images) of another body $L$. Another, more recent direction is to consider logarithmically concave functions on $\mathbb{R}^{d}$ instead of convex bodies: we designate some special, radially symmetric log-concave function $g$ as the analogue of the Euclidean ball, and want to find its largest integral position under the constraint that it is pointwise below some given log-concave function $f$. We follow both directions simultaneously: we consider the functional question, and allow essentially any meaningful function to play the role of $g$ above. Our general theorems jointly extend known results in both directions. The dual problem in the setting of convex bodies asks for the smallest volume ellipsoid, called Löwner’s ellipsoid, containing $K$. We consider the analogous problem for functions: we characterize the solutions of the optimization problem of finding a smallest integral position of some log-concave function $g$ under the constraint that it is pointwise above $f$. It turns out that in the functional setting, the relationship between the John and the Löwner problems is more intricate than it is in the setting of convex bodies. AU - Ivanov, Grigory AU - Naszódi, Márton ID - 14737 IS - 23 JF - International Mathematics Research Notices KW - General Mathematics SN - 1073-7928 TI - Functional John and Löwner conditions for pairs of log-concave functions VL - 2023 ER - TY - JOUR AB - We introduce a hierachy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions ϕ:(0,∞)→(0,∞). Two separated nets are called ϕ-displacement equivalent if, roughly speaking, there is a bijection between them which, for large radii R, displaces points of norm at most R by something of order at most ϕ(R). We show that the spectrum of ϕ-displacement equivalence spans from the established notion of bounded displacement equivalence, which corresponds to bounded ϕ, to the indiscrete equivalence relation, coresponding to ϕ(R)∈Ω(R), in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of ϕ-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of ϕ(R) for R→∞. We further undertake a comparison of our notion of ϕ-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of ϕ-displacement equivalence with that of bilipschitz equivalence. AU - Dymond, Michael AU - Kaluza, Vojtech ID - 9651 JF - Geometriae Dedicata SN - 0046-5755 TI - Divergence of separated nets with respect to displacement equivalence ER - TY - JOUR AB - Consider a geodesic triangle on a surface of constant curvature and subdivide it recursively into four triangles by joining the midpoints of its edges. We show the existence of a uniform δ>0 such that, at any step of the subdivision, all the triangle angles lie in the interval (δ,π−δ) . Additionally, we exhibit stabilising behaviours for both angles and lengths as this subdivision progresses. AU - Brunck, Florestan R ID - 13270 IS - 3 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Iterated medial triangle subdivision in surfaces of constant curvature VL - 70 ER - TY - JOUR AB - The study of the complexity of the constraint satisfaction problem (CSP), centred around the Feder-Vardi Dichotomy Conjecture, has been very prominent in the last two decades. After a long concerted effort and many partial results, the Dichotomy Conjecture has been proved in 2017 independently by Bulatov and Zhuk. At about the same time, a vast generalisation of CSP, called promise CSP, has started to gain prominence. In this survey, we explain the importance of promise CSP and highlight many new very interesting features that the study of promise CSP has brought to light. The complexity classification quest for the promise CSP is wide open, and we argue that, despite the promise CSP being more general, this quest is rather more accessible to a wide range of researchers than the dichotomy-led study of the CSP has been. AU - Krokhin, Andrei AU - Opršal, Jakub ID - 11991 IS - 3 JF - ACM SIGLOG News SN - 2372-3491 TI - An invitation to the promise constraint satisfaction problem VL - 9 ER - TY - JOUR AB - A matching is compatible to two or more labeled point sets of size n with labels {1, . . . , n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled sets of n points in convex position there exists a compatible matching with ⌊√2n + 1 − 1⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ). As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(log n) copies of any set of n points are necessary and sufficient for the existence of labelings of these point sets such that any compatible matching consists only of a single edge. AU - Aichholzer, Oswin AU - Arroyo Guevara, Alan M AU - Masárová, Zuzana AU - Parada, Irene AU - Perz, Daniel AU - Pilz, Alexander AU - Tkadlec, Josef AU - Vogtenhuber, Birgit ID - 11938 IS - 2 JF - Journal of Graph Algorithms and Applications SN - 1526-1719 TI - On compatible matchings VL - 26 ER - TY - THES AB - In this dissertation we study coboundary expansion of simplicial complex with a view of giving geometric applications. Our main novel tool is an equivariant version of Gromov's celebrated Topological Overlap Theorem. The equivariant topological overlap theorem leads to various geometric applications including a quantitative non-embeddability result for sufficiently thick buildings (which partially resolves a conjecture of Tancer and Vorwerk) and an improved lower bound on the pair-crossing number of (bounded degree) expander graphs. Additionally, we will give new proofs for several known lower bounds for geometric problems such as the number of Tverberg partitions or the crossing number of complete bipartite graphs. For the aforementioned applications one is naturally lead to study expansion properties of joins of simplicial complexes. In the presence of a special certificate for expansion (as it is the case, e.g., for spherical buildings), the join of two expanders is an expander. On the flip-side, we report quite some evidence that coboundary expansion exhibits very non-product-like behaviour under taking joins. For instance, we exhibit infinite families of graphs $(G_n)_{n\in \mathbb{N}}$ and $(H_n)_{n\in\mathbb{N}}$ whose join $G_n*H_n$ has expansion of lower order than the product of the expansion constant of the graphs. Moreover, we show an upper bound of $(d+1)/2^d$ on the normalized coboundary expansion constants for the complete multipartite complex $[n]^{*(d+1)}$ (under a mild divisibility condition on $n$). Via the probabilistic method the latter result extends to an upper bound of $(d+1)/2^d+\varepsilon$ on the coboundary expansion constant of the spherical building associated with $\mathrm{PGL}_{d+2}(\mathbb{F}_q)$ for any $\varepsilon>0$ and sufficiently large $q=q(\varepsilon)$. This disproves a conjecture of Lubotzky, Meshulam and Mozes -- in a rather strong sense. By improving on existing lower bounds we make further progress towards closing the gap between the known lower and upper bounds on the coboundary expansion constants of $[n]^{*(d+1)}$. The best improvements we achieve using computer-aided proofs and flag algebras. The exact value even for the complete $3$-partite $2$-dimensional complex $[n]^{*3}$ remains unknown but we are happy to conjecture a precise value for every $n$. %Moreover, we show that a previously shown lower bound on the expansion constant of the spherical building associated with $\mathrm{PGL}_{2}(\mathbb{F}_q)$ is not tight. In a loosely structured, last chapter of this thesis we collect further smaller observations related to expansion. We point out a link between discrete Morse theory and a technique for showing coboundary expansion, elaborate a bit on the hardness of computing coboundary expansion constants, propose a new criterion for coboundary expansion (in a very dense setting) and give one way of making the folklore result that expansion of links is a necessary condition for a simplicial complex to be an expander precise. AU - Wild, Pascal ID - 11777 SN - 2663-337X TI - High-dimensional expansion and crossing numbers of simplicial complexes ER - TY - JOUR AB - Van der Holst and Pendavingh introduced a graph parameter σ, which coincides with the more famous Colin de Verdière graph parameter μ for small values. However, the definition of a is much more geometric/topological directly reflecting embeddability properties of the graph. They proved μ(G) ≤ σ(G) + 2 and conjectured σ(G) ≤ σ(G) for any graph G. We confirm this conjecture. As far as we know, this is the first topological upper bound on σ(G) which is, in general, tight. Equality between μ and σ does not hold in general as van der Holst and Pendavingh showed that there is a graph G with μ(G) ≤ 18 and σ(G) ≥ 20. We show that the gap appears at much smaller values, namely, we exhibit a graph H for which μ(H) ≥ 7 and σ(H) ≥ 8. We also prove that, in general, the gap can be large: The incidence graphs Hq of finite projective planes of order q satisfy μ(Hq) ∈ O(q3/2) and σ(Hq) ≥ q2. AU - Kaluza, Vojtech AU - Tancer, Martin ID - 10335 JF - Combinatorica SN - 0209-9683 TI - Even maps, the Colin de Verdière number and representations of graphs VL - 42 ER - TY - JOUR AB - Let K be a convex body in Rn (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K∩h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p0 is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n≥2, there are always at least three distinct barycentric cuts through the point p0∈K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p0 are guaranteed if n≥3. AU - Patakova, Zuzana AU - Tancer, Martin AU - Wagner, Uli ID - 10776 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Barycentric cuts through a convex body VL - 68 ER - TY - JOUR AB - We introduce a new way of representing logarithmically concave functions on Rd. It allows us to extend the notion of the largest volume ellipsoid contained in a convex body to the setting of logarithmically concave functions as follows. For every s>0, we define a class of non-negative functions on Rd derived from ellipsoids in Rd+1. For any log-concave function f on Rd , and any fixed s>0, we consider functions belonging to this class, and find the one with the largest integral under the condition that it is pointwise less than or equal to f, and we call it the John s-function of f. After establishing existence and uniqueness, we give a characterization of this function similar to the one given by John in his fundamental theorem. We find that John s-functions converge to characteristic functions of ellipsoids as s tends to zero and to Gaussian densities as s tends to infinity. As an application, we prove a quantitative Helly type result: the integral of the pointwise minimum of any family of log-concave functions is at least a constant cd multiple of the integral of the pointwise minimum of a properly chosen subfamily of size 3d+2, where cd depends only on d. AU - Ivanov, Grigory AU - Naszódi, Márton ID - 10887 IS - 11 JF - Journal of Functional Analysis SN - 0022-1236 TI - Functional John ellipsoids VL - 282 ER - TY - JOUR AB - Given a finite point set P in general position in the plane, a full triangulation of P is a maximal straight-line embedded plane graph on P. A partial triangulation of P is a full triangulation of some subset P′ of P containing all extreme points in P. A bistellar flip on a partial triangulation either flips an edge (called edge flip), removes a non-extreme point of degree 3, or adds a point in P∖P′ as vertex of degree 3. The bistellar flip graph has all partial triangulations as vertices, and a pair of partial triangulations is adjacent if they can be obtained from one another by a bistellar flip. The edge flip graph is defined with full triangulations as vertices, and edge flips determining the adjacencies. Lawson showed in the early seventies that these graphs are connected. The goal of this paper is to investigate the structure of these graphs, with emphasis on their vertex connectivity. For sets P of n points in the plane in general position, we show that the edge flip graph is ⌈n/2−2⌉-vertex connected, and the bistellar flip graph is (n−3)-vertex connected; both results are tight. The latter bound matches the situation for the subfamily of regular triangulations (i.e., partial triangulations obtained by lifting the points to 3-space and projecting back the lower convex hull), where (n−3)-vertex connectivity has been known since the late eighties through the secondary polytope due to Gelfand, Kapranov, & Zelevinsky and Balinski’s Theorem. For the edge flip-graph, we additionally show that the vertex connectivity is at least as large as (and hence equal to) the minimum degree (i.e., the minimum number of flippable edges in any full triangulation), provided that n is large enough. Our methods also yield several other results: (i) The edge flip graph can be covered by graphs of polytopes of dimension ⌈n/2−2⌉ (products of associahedra) and the bistellar flip graph can be covered by graphs of polytopes of dimension n−3 (products of secondary polytopes). (ii) A partial triangulation is regular, if it has distance n−3 in the Hasse diagram of the partial order of partial subdivisions from the trivial subdivision. (iii) All partial triangulations of a point set are regular iff the partial order of partial subdivisions has height n−3. (iv) There are arbitrarily large sets P with non-regular partial triangulations and such that every proper subset has only regular triangulations, i.e., there are no small certificates for the existence of non-regular triangulations. AU - Wagner, Uli AU - Welzl, Emo ID - 12129 IS - 4 JF - Discrete & Computational Geometry KW - Computational Theory and Mathematics KW - Discrete Mathematics and Combinatorics KW - Geometry and Topology KW - Theoretical Computer Science SN - 0179-5376 TI - Connectivity of triangulation flip graphs in the plane VL - 68 ER - TY - JOUR AB - A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2 -genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t×t grid or one of the following so-called t -Kuratowski graphs: K3,t, or t copies of K5 or K3,3 sharing at most two common vertices. We show that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani–Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2-genus of graphs. AU - Fulek, Radoslav AU - Kynčl, Jan ID - 11593 JF - Discrete and Computational Geometry SN - 0179-5376 TI - The Z2-Genus of Kuratowski minors VL - 68 ER - TY - CONF AB - Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider bundlings for families of pseudosegments, i.e., simple curves such that any two have share at most one point at which they cross. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of such instances (up to adding a term depending on the facial structure). This 8-approximation also holds for bundlings of good drawings of graphs. In the special case of circular drawings the approximation factor is 8 (no extra term), this improves upon the 10-approximation of Fink et al. [6]. We also show how to compute a 92-approximation when the intersection graph of the pseudosegments is bipartite. AU - Arroyo Guevara, Alan M AU - Felsner, Stefan ID - 11185 SN - 0302-9743 T2 - WALCOM 2022: Algorithms and Computation TI - Approximating the bundled crossing number VL - 13174 ER - TY - JOUR AB - Expander graphs (sparse but highly connected graphs) have, since their inception, been the source of deep links between Mathematics and Computer Science as well as applications to other areas. In recent years, a fascinating theory of high-dimensional expanders has begun to emerge, which is still in a formative stage but has nonetheless already lead to a number of striking results. Unlike for graphs, in higher dimensions there is a rich array of non-equivalent notions of expansion (coboundary expansion, cosystolic expansion, topological expansion, spectral expansion, etc.), with differents strengths and applications. In this talk, we will survey this landscape of high-dimensional expansion, with a focus on two main results. First, we will present Gromov’s Topological Overlap Theorem, which asserts that coboundary expansion (a quantitative version of vanishing mod 2 cohomology) implies topological expansion (roughly, the property that for every map from a simplicial complex to a manifold of the same dimension, the images of a positive fraction of the simplices have a point in common). Second, we will outline a construction of bounded degree 2-dimensional topological expanders, due to Kaufman, Kazhdan, and Lubotzky. AU - Wagner, Uli ID - 14381 JF - Bulletin de la Societe Mathematique de France SN - 0037-9484 TI - High-dimensional expanders (after Gromov, Kaufman, Kazhdan, Lubotzky, and others) VL - 438 ER - TY - JOUR AB - We introduce a new variant of quantitative Helly-type theorems: the minimal homothetic distance of the intersection of a family of convex sets to the intersection of a subfamily of a fixed size. As an application, we establish the following quantitative Helly-type result for the diameter. If $K$ is the intersection of finitely many convex bodies in $\mathbb{R}^d$, then one can select $2d$ of these bodies whose intersection is of diameter at most $(2d)^3{diam}(K)$. The best previously known estimate, due to Brazitikos [Bull. Hellenic Math. Soc., 62 (2018), pp. 19--25], is $c d^{11/2}$. Moreover, we confirm that the multiplicative factor $c d^{1/2}$ conjectured by Bárány, Katchalski, and Pach [Proc. Amer. Math. Soc., 86 (1982), pp. 109--114] cannot be improved. The bounds above follow from our key result that concerns sparse approximation of a convex polytope by the convex hull of a well-chosen subset of its vertices: Assume that $Q \subset {\mathbb R}^d$ is a polytope whose centroid is the origin. Then there exist at most 2d vertices of $Q$ whose convex hull $Q^{\prime \prime}$ satisfies $Q \subset - 8d^3 Q^{\prime \prime}.$ AU - Ivanov, Grigory AU - Naszodi, Marton ID - 11435 IS - 2 JF - SIAM Journal on Discrete Mathematics SN - 0895-4801 TI - A quantitative Helly-type theorem: Containment in a homothet VL - 36 ER - TY - CONF AB - matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge. AU - Aichholzer, Oswin AU - Arroyo Guevara, Alan M AU - Masárová, Zuzana AU - Parada, Irene AU - Perz, Daniel AU - Pilz, Alexander AU - Tkadlec, Josef AU - Vogtenhuber, Birgit ID - 9296 SN - 03029743 T2 - 15th International Conference on Algorithms and Computation TI - On compatible matchings VL - 12635 ER - TY - JOUR AB - We continue our study of ‘no‐dimension’ analogues of basic theorems in combinatorial and convex geometry in Banach spaces. We generalize some results of the paper (Adiprasito, Bárány and Mustafa, ‘Theorems of Carathéodory, Helly, and Tverberg without dimension’, Proceedings of the Thirtieth Annual ACM‐SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, San Diego, California, 2019) 2350–2360) and prove no‐dimension versions of the colored Tverberg theorem, the selection lemma and the weak 𝜀 ‐net theorem in Banach spaces of type 𝑝>1 . To prove these results, we use the original ideas of Adiprasito, Bárány and Mustafa for the Euclidean case, our no‐dimension version of the Radon theorem and slightly modified version of the celebrated Maurey lemma. AU - Ivanov, Grigory ID - 9037 IS - 2 JF - Bulletin of the London Mathematical Society SN - 00246093 TI - No-dimension Tverberg's theorem and its corollaries in Banach spaces of type p VL - 53 ER - TY - JOUR AB - We study properties of the volume of projections of the n-dimensional cross-polytope $\crosp^n = \{ x \in \R^n \mid |x_1| + \dots + |x_n| \leqslant 1\}.$ We prove that the projection of $\crosp^n$ onto a k-dimensional coordinate subspace has the maximum possible volume for k=2 and for k=3. We obtain the exact lower bound on the volume of such a projection onto a two-dimensional plane. Also, we show that there exist local maxima which are not global ones for the volume of a projection of $\crosp^n$ onto a k-dimensional subspace for any n>k⩾2. AU - Ivanov, Grigory ID - 9098 IS - 5 JF - Discrete Mathematics SN - 0012365X TI - On the volume of projections of the cross-polytope VL - 344 ER - TY - JOUR AB - Hill's Conjecture states that the crossing number cr(𝐾𝑛) of the complete graph 𝐾𝑛 in the plane (equivalently, the sphere) is 14⌊𝑛2⌋⌊𝑛−12⌋⌊𝑛−22⌋⌊𝑛−32⌋=𝑛4/64+𝑂(𝑛3) . Moon proved that the expected number of crossings in a spherical drawing in which the points are randomly distributed and joined by geodesics is precisely 𝑛4/64+𝑂(𝑛3) , thus matching asymptotically the conjectured value of cr(𝐾𝑛) . Let cr𝑃(𝐺) denote the crossing number of a graph 𝐺 in the projective plane. Recently, Elkies proved that the expected number of crossings in a naturally defined random projective plane drawing of 𝐾𝑛 is (𝑛4/8𝜋2)+𝑂(𝑛3) . In analogy with the relation of Moon's result to Hill's conjecture, Elkies asked if lim𝑛→∞ cr𝑃(𝐾𝑛)/𝑛4=1/8𝜋2 . We construct drawings of 𝐾𝑛 in the projective plane that disprove this. AU - Arroyo Guevara, Alan M AU - Mcquillan, Dan AU - Richter, R. Bruce AU - Salazar, Gelasio AU - Sullivan, Matthew ID - 9295 IS - 3 JF - Journal of Graph Theory SN - 0364-9024 TI - Drawings of complete graphs in the projective plane VL - 97 ER -