TY - JOUR AB - We introduce a new way of representing logarithmically concave functions on Rd. It allows us to extend the notion of the largest volume ellipsoid contained in a convex body to the setting of logarithmically concave functions as follows. For every s>0, we define a class of non-negative functions on Rd derived from ellipsoids in Rd+1. For any log-concave function f on Rd , and any fixed s>0, we consider functions belonging to this class, and find the one with the largest integral under the condition that it is pointwise less than or equal to f, and we call it the John s-function of f. After establishing existence and uniqueness, we give a characterization of this function similar to the one given by John in his fundamental theorem. We find that John s-functions converge to characteristic functions of ellipsoids as s tends to zero and to Gaussian densities as s tends to infinity. As an application, we prove a quantitative Helly type result: the integral of the pointwise minimum of any family of log-concave functions is at least a constant cd multiple of the integral of the pointwise minimum of a properly chosen subfamily of size 3d+2, where cd depends only on d. AU - Ivanov, Grigory AU - Naszódi, Márton ID - 10887 IS - 11 JF - Journal of Functional Analysis SN - 0022-1236 TI - Functional John ellipsoids VL - 282 ER - TY - JOUR AB - Given a finite point set P in general position in the plane, a full triangulation of P is a maximal straight-line embedded plane graph on P. A partial triangulation of P is a full triangulation of some subset P′ of P containing all extreme points in P. A bistellar flip on a partial triangulation either flips an edge (called edge flip), removes a non-extreme point of degree 3, or adds a point in P∖P′ as vertex of degree 3. The bistellar flip graph has all partial triangulations as vertices, and a pair of partial triangulations is adjacent if they can be obtained from one another by a bistellar flip. The edge flip graph is defined with full triangulations as vertices, and edge flips determining the adjacencies. Lawson showed in the early seventies that these graphs are connected. The goal of this paper is to investigate the structure of these graphs, with emphasis on their vertex connectivity. For sets P of n points in the plane in general position, we show that the edge flip graph is ⌈n/2−2⌉-vertex connected, and the bistellar flip graph is (n−3)-vertex connected; both results are tight. The latter bound matches the situation for the subfamily of regular triangulations (i.e., partial triangulations obtained by lifting the points to 3-space and projecting back the lower convex hull), where (n−3)-vertex connectivity has been known since the late eighties through the secondary polytope due to Gelfand, Kapranov, & Zelevinsky and Balinski’s Theorem. For the edge flip-graph, we additionally show that the vertex connectivity is at least as large as (and hence equal to) the minimum degree (i.e., the minimum number of flippable edges in any full triangulation), provided that n is large enough. Our methods also yield several other results: (i) The edge flip graph can be covered by graphs of polytopes of dimension ⌈n/2−2⌉ (products of associahedra) and the bistellar flip graph can be covered by graphs of polytopes of dimension n−3 (products of secondary polytopes). (ii) A partial triangulation is regular, if it has distance n−3 in the Hasse diagram of the partial order of partial subdivisions from the trivial subdivision. (iii) All partial triangulations of a point set are regular iff the partial order of partial subdivisions has height n−3. (iv) There are arbitrarily large sets P with non-regular partial triangulations and such that every proper subset has only regular triangulations, i.e., there are no small certificates for the existence of non-regular triangulations. AU - Wagner, Uli AU - Welzl, Emo ID - 12129 IS - 4 JF - Discrete & Computational Geometry KW - Computational Theory and Mathematics KW - Discrete Mathematics and Combinatorics KW - Geometry and Topology KW - Theoretical Computer Science SN - 0179-5376 TI - Connectivity of triangulation flip graphs in the plane VL - 68 ER - TY - JOUR AB - A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2 -genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t×t grid or one of the following so-called t -Kuratowski graphs: K3,t, or t copies of K5 or K3,3 sharing at most two common vertices. We show that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani–Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2-genus of graphs. AU - Fulek, Radoslav AU - Kynčl, Jan ID - 11593 JF - Discrete and Computational Geometry SN - 0179-5376 TI - The Z2-Genus of Kuratowski minors VL - 68 ER - TY - CONF AB - Bundling crossings is a strategy which can enhance the readability of graph drawings. In this paper we consider bundlings for families of pseudosegments, i.e., simple curves such that any two have share at most one point at which they cross. Our main result is that there is a polynomial-time algorithm to compute an 8-approximation of the bundled crossing number of such instances (up to adding a term depending on the facial structure). This 8-approximation also holds for bundlings of good drawings of graphs. In the special case of circular drawings the approximation factor is 8 (no extra term), this improves upon the 10-approximation of Fink et al. [6]. We also show how to compute a 92-approximation when the intersection graph of the pseudosegments is bipartite. AU - Arroyo Guevara, Alan M AU - Felsner, Stefan ID - 11185 SN - 0302-9743 T2 - WALCOM 2022: Algorithms and Computation TI - Approximating the bundled crossing number VL - 13174 ER - TY - JOUR AB - Expander graphs (sparse but highly connected graphs) have, since their inception, been the source of deep links between Mathematics and Computer Science as well as applications to other areas. In recent years, a fascinating theory of high-dimensional expanders has begun to emerge, which is still in a formative stage but has nonetheless already lead to a number of striking results. Unlike for graphs, in higher dimensions there is a rich array of non-equivalent notions of expansion (coboundary expansion, cosystolic expansion, topological expansion, spectral expansion, etc.), with differents strengths and applications. In this talk, we will survey this landscape of high-dimensional expansion, with a focus on two main results. First, we will present Gromov’s Topological Overlap Theorem, which asserts that coboundary expansion (a quantitative version of vanishing mod 2 cohomology) implies topological expansion (roughly, the property that for every map from a simplicial complex to a manifold of the same dimension, the images of a positive fraction of the simplices have a point in common). Second, we will outline a construction of bounded degree 2-dimensional topological expanders, due to Kaufman, Kazhdan, and Lubotzky. AU - Wagner, Uli ID - 14381 JF - Bulletin de la Societe Mathematique de France SN - 0037-9484 TI - High-dimensional expanders (after Gromov, Kaufman, Kazhdan, Lubotzky, and others) VL - 438 ER - TY - JOUR AB - We introduce a new variant of quantitative Helly-type theorems: the minimal homothetic distance of the intersection of a family of convex sets to the intersection of a subfamily of a fixed size. As an application, we establish the following quantitative Helly-type result for the diameter. If $K$ is the intersection of finitely many convex bodies in $\mathbb{R}^d$, then one can select $2d$ of these bodies whose intersection is of diameter at most $(2d)^3{diam}(K)$. The best previously known estimate, due to Brazitikos [Bull. Hellenic Math. Soc., 62 (2018), pp. 19--25], is $c d^{11/2}$. Moreover, we confirm that the multiplicative factor $c d^{1/2}$ conjectured by Bárány, Katchalski, and Pach [Proc. Amer. Math. Soc., 86 (1982), pp. 109--114] cannot be improved. The bounds above follow from our key result that concerns sparse approximation of a convex polytope by the convex hull of a well-chosen subset of its vertices: Assume that $Q \subset {\mathbb R}^d$ is a polytope whose centroid is the origin. Then there exist at most 2d vertices of $Q$ whose convex hull $Q^{\prime \prime}$ satisfies $Q \subset - 8d^3 Q^{\prime \prime}.$ AU - Ivanov, Grigory AU - Naszodi, Marton ID - 11435 IS - 2 JF - SIAM Journal on Discrete Mathematics SN - 0895-4801 TI - A quantitative Helly-type theorem: Containment in a homothet VL - 36 ER - TY - CONF AB - matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge. AU - Aichholzer, Oswin AU - Arroyo Guevara, Alan M AU - Masárová, Zuzana AU - Parada, Irene AU - Perz, Daniel AU - Pilz, Alexander AU - Tkadlec, Josef AU - Vogtenhuber, Birgit ID - 9296 SN - 03029743 T2 - 15th International Conference on Algorithms and Computation TI - On compatible matchings VL - 12635 ER - TY - JOUR AB - We continue our study of ‘no‐dimension’ analogues of basic theorems in combinatorial and convex geometry in Banach spaces. We generalize some results of the paper (Adiprasito, Bárány and Mustafa, ‘Theorems of Carathéodory, Helly, and Tverberg without dimension’, Proceedings of the Thirtieth Annual ACM‐SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, San Diego, California, 2019) 2350–2360) and prove no‐dimension versions of the colored Tverberg theorem, the selection lemma and the weak 𝜀 ‐net theorem in Banach spaces of type 𝑝>1 . To prove these results, we use the original ideas of Adiprasito, Bárány and Mustafa for the Euclidean case, our no‐dimension version of the Radon theorem and slightly modified version of the celebrated Maurey lemma. AU - Ivanov, Grigory ID - 9037 IS - 2 JF - Bulletin of the London Mathematical Society SN - 00246093 TI - No-dimension Tverberg's theorem and its corollaries in Banach spaces of type p VL - 53 ER - TY - JOUR AB - We study properties of the volume of projections of the n-dimensional cross-polytope $\crosp^n = \{ x \in \R^n \mid |x_1| + \dots + |x_n| \leqslant 1\}.$ We prove that the projection of $\crosp^n$ onto a k-dimensional coordinate subspace has the maximum possible volume for k=2 and for k=3. We obtain the exact lower bound on the volume of such a projection onto a two-dimensional plane. Also, we show that there exist local maxima which are not global ones for the volume of a projection of $\crosp^n$ onto a k-dimensional subspace for any n>k⩾2. AU - Ivanov, Grigory ID - 9098 IS - 5 JF - Discrete Mathematics SN - 0012365X TI - On the volume of projections of the cross-polytope VL - 344 ER - TY - JOUR AB - Hill's Conjecture states that the crossing number cr(𝐾𝑛) of the complete graph 𝐾𝑛 in the plane (equivalently, the sphere) is 14⌊𝑛2⌋⌊𝑛−12⌋⌊𝑛−22⌋⌊𝑛−32⌋=𝑛4/64+𝑂(𝑛3) . Moon proved that the expected number of crossings in a spherical drawing in which the points are randomly distributed and joined by geodesics is precisely 𝑛4/64+𝑂(𝑛3) , thus matching asymptotically the conjectured value of cr(𝐾𝑛) . Let cr𝑃(𝐺) denote the crossing number of a graph 𝐺 in the projective plane. Recently, Elkies proved that the expected number of crossings in a naturally defined random projective plane drawing of 𝐾𝑛 is (𝑛4/8𝜋2)+𝑂(𝑛3) . In analogy with the relation of Moon's result to Hill's conjecture, Elkies asked if lim𝑛→∞ cr𝑃(𝐾𝑛)/𝑛4=1/8𝜋2 . We construct drawings of 𝐾𝑛 in the projective plane that disprove this. AU - Arroyo Guevara, Alan M AU - Mcquillan, Dan AU - Richter, R. Bruce AU - Salazar, Gelasio AU - Sullivan, Matthew ID - 9295 IS - 3 JF - Journal of Graph Theory SN - 0364-9024 TI - Drawings of complete graphs in the projective plane VL - 97 ER -