TY - JOUR AB - We prove the following quantitative Borsuk–Ulam-type result (an equivariant analogue of Gromov’s Topological Overlap Theorem): Let X be a free ℤ/2-complex of dimension d with coboundary expansion at least ηk in dimension 0 ≤ k < d. Then for every equivariant map F: X →ℤ/2 ℝd, the fraction of d-simplices σ of X with 0 ∈ F (σ) is at least 2−d Π d−1k=0ηk. As an application, we show that for every sufficiently thick d-dimensional spherical building Y and every map f: Y → ℝ2d, we have f(σ) ∩ f(τ) ≠ ∅ for a constant fraction μd > 0 of pairs {σ, τ} of d-simplices of Y. In particular, such complexes are non-embeddable into ℝ2d, which proves a conjecture of Tancer and Vorwerk for sufficiently thick spherical buildings. We complement these results by upper bounds on the coboundary expansion of two families of simplicial complexes; this indicates some limitations to the bounds one can obtain by straighforward applications of the quantitative Borsuk–Ulam theorem. Specifically, we prove • an upper bound of (d + 1)/2d on the normalized (d − 1)-th coboundary expansion constant of complete (d + 1)-partite d-dimensional complexes (under a mild divisibility assumption on the sizes of the parts); and • an upper bound of (d + 1)/2d + ε on the normalized (d − 1)-th coboundary expansion of the d-dimensional spherical building associated with GLd+2(Fq) for any ε > 0 and sufficiently large q. This disproves, in a rather strong sense, a conjecture of Lubotzky, Meshulam and Mozes. AU - Wagner, Uli AU - Wild, Pascal ID - 14445 IS - 2 JF - Israel Journal of Mathematics SN - 0021-2172 TI - Coboundary expansion, equivariant overlap, and crossing numbers of simplicial complexes VL - 256 ER - TY - JOUR AB - The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and n tokens with labels 1,2, . . . , n, one on each vertex. The goal is to get token i to vertex vi for all i= 1, . . . , n using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge.Token swapping on a tree, also known as “sorting with a transposition tree,” is not known to be in P nor NP-complete. We present some partial results: 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a “happy leaf”), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves—as all known approximation algorithms for the problem do—has approximation factor at least 4/3. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem—weighted coloured token swapping—is NP-complete on trees, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved. AU - Biniaz, Ahmad AU - Jain, Kshitij AU - Lubiw, Anna AU - Masárová, Zuzana AU - Miltzow, Tillmann AU - Mondal, Debajyoti AU - Naredla, Anurag Murty AU - Tkadlec, Josef AU - Turcotte, Alexi ID - 12833 IS - 2 JF - Discrete Mathematics and Theoretical Computer Science SN - 1462-7264 TI - Token swapping on trees VL - 24 ER - TY - JOUR AB - John’s fundamental theorem characterizing the largest volume ellipsoid contained in a convex body $K$ in $\mathbb{R}^{d}$ has seen several generalizations and extensions. One direction, initiated by V. Milman is to replace ellipsoids by positions (affine images) of another body $L$. Another, more recent direction is to consider logarithmically concave functions on $\mathbb{R}^{d}$ instead of convex bodies: we designate some special, radially symmetric log-concave function $g$ as the analogue of the Euclidean ball, and want to find its largest integral position under the constraint that it is pointwise below some given log-concave function $f$. We follow both directions simultaneously: we consider the functional question, and allow essentially any meaningful function to play the role of $g$ above. Our general theorems jointly extend known results in both directions. The dual problem in the setting of convex bodies asks for the smallest volume ellipsoid, called Löwner’s ellipsoid, containing $K$. We consider the analogous problem for functions: we characterize the solutions of the optimization problem of finding a smallest integral position of some log-concave function $g$ under the constraint that it is pointwise above $f$. It turns out that in the functional setting, the relationship between the John and the Löwner problems is more intricate than it is in the setting of convex bodies. AU - Ivanov, Grigory AU - Naszódi, Márton ID - 14737 IS - 23 JF - International Mathematics Research Notices KW - General Mathematics SN - 1073-7928 TI - Functional John and Löwner conditions for pairs of log-concave functions VL - 2023 ER - TY - JOUR AB - We introduce a hierachy of equivalence relations on the set of separated nets of a given Euclidean space, indexed by concave increasing functions ϕ:(0,∞)→(0,∞). Two separated nets are called ϕ-displacement equivalent if, roughly speaking, there is a bijection between them which, for large radii R, displaces points of norm at most R by something of order at most ϕ(R). We show that the spectrum of ϕ-displacement equivalence spans from the established notion of bounded displacement equivalence, which corresponds to bounded ϕ, to the indiscrete equivalence relation, coresponding to ϕ(R)∈Ω(R), in which all separated nets are equivalent. In between the two ends of this spectrum, the notions of ϕ-displacement equivalence are shown to be pairwise distinct with respect to the asymptotic classes of ϕ(R) for R→∞. We further undertake a comparison of our notion of ϕ-displacement equivalence with previously studied relations on separated nets. Particular attention is given to the interaction of the notions of ϕ-displacement equivalence with that of bilipschitz equivalence. AU - Dymond, Michael AU - Kaluza, Vojtech ID - 9651 JF - Geometriae Dedicata SN - 0046-5755 TI - Divergence of separated nets with respect to displacement equivalence ER - TY - JOUR AB - Consider a geodesic triangle on a surface of constant curvature and subdivide it recursively into four triangles by joining the midpoints of its edges. We show the existence of a uniform δ>0 such that, at any step of the subdivision, all the triangle angles lie in the interval (δ,π−δ) . Additionally, we exhibit stabilising behaviours for both angles and lengths as this subdivision progresses. AU - Brunck, Florestan R ID - 13270 IS - 3 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Iterated medial triangle subdivision in surfaces of constant curvature VL - 70 ER - TY - JOUR AB - The study of the complexity of the constraint satisfaction problem (CSP), centred around the Feder-Vardi Dichotomy Conjecture, has been very prominent in the last two decades. After a long concerted effort and many partial results, the Dichotomy Conjecture has been proved in 2017 independently by Bulatov and Zhuk. At about the same time, a vast generalisation of CSP, called promise CSP, has started to gain prominence. In this survey, we explain the importance of promise CSP and highlight many new very interesting features that the study of promise CSP has brought to light. The complexity classification quest for the promise CSP is wide open, and we argue that, despite the promise CSP being more general, this quest is rather more accessible to a wide range of researchers than the dichotomy-led study of the CSP has been. AU - Krokhin, Andrei AU - Opršal, Jakub ID - 11991 IS - 3 JF - ACM SIGLOG News SN - 2372-3491 TI - An invitation to the promise constraint satisfaction problem VL - 9 ER - TY - JOUR AB - A matching is compatible to two or more labeled point sets of size n with labels {1, . . . , n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled sets of n points in convex position there exists a compatible matching with ⌊√2n + 1 − 1⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ). As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(log n) copies of any set of n points are necessary and sufficient for the existence of labelings of these point sets such that any compatible matching consists only of a single edge. AU - Aichholzer, Oswin AU - Arroyo Guevara, Alan M AU - Masárová, Zuzana AU - Parada, Irene AU - Perz, Daniel AU - Pilz, Alexander AU - Tkadlec, Josef AU - Vogtenhuber, Birgit ID - 11938 IS - 2 JF - Journal of Graph Algorithms and Applications SN - 1526-1719 TI - On compatible matchings VL - 26 ER - TY - THES AB - In this dissertation we study coboundary expansion of simplicial complex with a view of giving geometric applications. Our main novel tool is an equivariant version of Gromov's celebrated Topological Overlap Theorem. The equivariant topological overlap theorem leads to various geometric applications including a quantitative non-embeddability result for sufficiently thick buildings (which partially resolves a conjecture of Tancer and Vorwerk) and an improved lower bound on the pair-crossing number of (bounded degree) expander graphs. Additionally, we will give new proofs for several known lower bounds for geometric problems such as the number of Tverberg partitions or the crossing number of complete bipartite graphs. For the aforementioned applications one is naturally lead to study expansion properties of joins of simplicial complexes. In the presence of a special certificate for expansion (as it is the case, e.g., for spherical buildings), the join of two expanders is an expander. On the flip-side, we report quite some evidence that coboundary expansion exhibits very non-product-like behaviour under taking joins. For instance, we exhibit infinite families of graphs $(G_n)_{n\in \mathbb{N}}$ and $(H_n)_{n\in\mathbb{N}}$ whose join $G_n*H_n$ has expansion of lower order than the product of the expansion constant of the graphs. Moreover, we show an upper bound of $(d+1)/2^d$ on the normalized coboundary expansion constants for the complete multipartite complex $[n]^{*(d+1)}$ (under a mild divisibility condition on $n$). Via the probabilistic method the latter result extends to an upper bound of $(d+1)/2^d+\varepsilon$ on the coboundary expansion constant of the spherical building associated with $\mathrm{PGL}_{d+2}(\mathbb{F}_q)$ for any $\varepsilon>0$ and sufficiently large $q=q(\varepsilon)$. This disproves a conjecture of Lubotzky, Meshulam and Mozes -- in a rather strong sense. By improving on existing lower bounds we make further progress towards closing the gap between the known lower and upper bounds on the coboundary expansion constants of $[n]^{*(d+1)}$. The best improvements we achieve using computer-aided proofs and flag algebras. The exact value even for the complete $3$-partite $2$-dimensional complex $[n]^{*3}$ remains unknown but we are happy to conjecture a precise value for every $n$. %Moreover, we show that a previously shown lower bound on the expansion constant of the spherical building associated with $\mathrm{PGL}_{2}(\mathbb{F}_q)$ is not tight. In a loosely structured, last chapter of this thesis we collect further smaller observations related to expansion. We point out a link between discrete Morse theory and a technique for showing coboundary expansion, elaborate a bit on the hardness of computing coboundary expansion constants, propose a new criterion for coboundary expansion (in a very dense setting) and give one way of making the folklore result that expansion of links is a necessary condition for a simplicial complex to be an expander precise. AU - Wild, Pascal ID - 11777 SN - 2663-337X TI - High-dimensional expansion and crossing numbers of simplicial complexes ER - TY - JOUR AB - Van der Holst and Pendavingh introduced a graph parameter σ, which coincides with the more famous Colin de Verdière graph parameter μ for small values. However, the definition of a is much more geometric/topological directly reflecting embeddability properties of the graph. They proved μ(G) ≤ σ(G) + 2 and conjectured σ(G) ≤ σ(G) for any graph G. We confirm this conjecture. As far as we know, this is the first topological upper bound on σ(G) which is, in general, tight. Equality between μ and σ does not hold in general as van der Holst and Pendavingh showed that there is a graph G with μ(G) ≤ 18 and σ(G) ≥ 20. We show that the gap appears at much smaller values, namely, we exhibit a graph H for which μ(H) ≥ 7 and σ(H) ≥ 8. We also prove that, in general, the gap can be large: The incidence graphs Hq of finite projective planes of order q satisfy μ(Hq) ∈ O(q3/2) and σ(Hq) ≥ q2. AU - Kaluza, Vojtech AU - Tancer, Martin ID - 10335 JF - Combinatorica SN - 0209-9683 TI - Even maps, the Colin de Verdière number and representations of graphs VL - 42 ER - TY - JOUR AB - Let K be a convex body in Rn (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K∩h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p0 is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n≥2, there are always at least three distinct barycentric cuts through the point p0∈K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p0 are guaranteed if n≥3. AU - Patakova, Zuzana AU - Tancer, Martin AU - Wagner, Uli ID - 10776 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Barycentric cuts through a convex body VL - 68 ER -