@inproceedings{5791,
abstract = {Due to data compression or low resolution, nearby vertices and edges of a graph drawing may be bundled to a common node or arc. We model such a “compromised” drawing by a piecewise linear map φ:G → ℝ. We wish to perturb φ by an arbitrarily small ε>0 into a proper drawing (in which the vertices are distinct points, any two edges intersect in finitely many points, and no three edges have a common interior point) that minimizes the number of crossings. An ε-perturbation, for every ε>0, is given by a piecewise linear map (Formula Presented), where with ||·|| is the uniform norm (i.e., sup norm). We present a polynomial-time solution for this optimization problem when G is a cycle and the map φ has no spurs (i.e., no two adjacent edges are mapped to overlapping arcs). We also show that the problem becomes NP-complete (i) when G is an arbitrary graph and φ has no spurs, and (ii) when φ may have spurs and G is a cycle or a union of disjoint paths.},
author = {Fulek, Radoslav and Tóth, Csaba D.},
isbn = {9783030044138},
location = {Barcelona, Spain},
pages = {229--241},
publisher = {Springer},
title = {{Crossing minimization in perturbed drawings}},
doi = {10.1007/978-3-030-04414-5_16},
volume = {11282 },
year = {2018},
}
@article{5960,
abstract = {In this paper we present a reliable method to verify the existence of loops along the uncertain trajectory of a robot, based on proprioceptive measurements only, within a bounded-error context. The loop closure detection is one of the key points in simultaneous localization and mapping (SLAM) methods, especially in homogeneous environments with difficult scenes recognitions. The proposed approach is generic and could be coupled with conventional SLAM algorithms to reliably reduce their computing burden, thus improving the localization and mapping processes in the most challenging environments such as unexplored underwater extents. To prove that a robot performed a loop whatever the uncertainties in its evolution, we employ the notion of topological degree that originates in the field of differential topology. We show that a verification tool based on the topological degree is an optimal method for proving robot loops. This is demonstrated both on datasets from real missions involving autonomous underwater vehicles and by a mathematical discussion.},
author = {Rohou, Simon and Franek, Peter and Aubry, Clément and Jaulin, Luc},
issn = {0278-3649},
journal = {The International Journal of Robotics Research},
number = {12},
pages = {1500--1516},
publisher = {SAGE Publications},
title = {{Proving the existence of loops in robot trajectories}},
doi = {10.1177/0278364918808367},
volume = {37},
year = {2018},
}
@article{6355,
abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.},
author = {Akopyan, Arseniy and Avvakumov, Sergey},
issn = {2050-5094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}},
doi = {10.1017/fms.2018.7},
volume = {6},
year = {2018},
}
@article{6774,
abstract = {A central problem of algebraic topology is to understand the homotopy groups 𝜋𝑑(𝑋) of a topological space X. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group 𝜋1(𝑋) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with 𝜋1(𝑋) trivial), compute the higher homotopy group 𝜋𝑑(𝑋) for any given 𝑑≥2 . However, these algorithms come with a caveat: They compute the isomorphism type of 𝜋𝑑(𝑋) , 𝑑≥2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of 𝜋𝑑(𝑋) . Converting elements of this abstract group into explicit geometric maps from the d-dimensional sphere 𝑆𝑑 to X has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a simply connected space X, computes 𝜋𝑑(𝑋) and represents its elements as simplicial maps from a suitable triangulation of the d-sphere 𝑆𝑑 to X. For fixed d, the algorithm runs in time exponential in size(𝑋) , the number of simplices of X. Moreover, we prove that this is optimal: For every fixed 𝑑≥2 , we construct a family of simply connected spaces X such that for any simplicial map representing a generator of 𝜋𝑑(𝑋) , the size of the triangulation of 𝑆𝑑 on which the map is defined, is exponential in size(𝑋) .},
author = {Filakovský, Marek and Franek, Peter and Wagner, Uli and Zhechev, Stephan Y},
issn = {2367-1734},
journal = {Journal of Applied and Computational Topology},
number = {3-4},
pages = {177--231},
publisher = {Springer},
title = {{Computing simplicial representatives of homotopy group elements}},
doi = {10.1007/s41468-018-0021-5},
volume = {2},
year = {2018},
}
@article{425,
abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, that is, an essential curve in the boundary of X bounding a disk in S3 \ X with length bounded by a computable function of the number of tetrahedra of X.},
author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli},
journal = {Journal of the ACM},
number = {1},
publisher = {ACM},
title = {{Embeddability in the 3-Sphere is decidable}},
doi = {10.1145/3078632},
volume = {65},
year = {2018},
}
@inproceedings{433,
abstract = {A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n.},
author = {Fulek, Radoslav and Pach, János},
location = {Boston, MA, United States},
pages = {160 -- 166},
publisher = {Springer},
title = {{Thrackles: An improved upper bound}},
doi = {10.1007/978-3-319-73915-1_14},
volume = {10692},
year = {2018},
}
@inproceedings{309,
abstract = {We present an efficient algorithm for a problem in the interface between clustering and graph embeddings. An embedding ' : G ! M of a graph G into a 2manifold M maps the vertices in V (G) to distinct points and the edges in E(G) to interior-disjoint Jordan arcs between the corresponding vertices. In applications in clustering, cartography, and visualization, nearby vertices and edges are often bundled to a common node or arc, due to data compression or low resolution. This raises the computational problem of deciding whether a given map ' : G ! M comes from an embedding. A map ' : G ! M is a weak embedding if it can be perturbed into an embedding ψ: G ! M with k' "k < " for every " > 0. A polynomial-time algorithm for recognizing weak embeddings was recently found by Fulek and Kyncl [14], which reduces to solving a system of linear equations over Z2. It runs in O(n2!) O(n4:75) time, where 2:373 is the matrix multiplication exponent and n is the number of vertices and edges of G. We improve the running time to O(n log n). Our algorithm is also conceptually simpler than [14]: We perform a sequence of local operations that gradually "untangles" the image '(G) into an embedding (G), or reports that ' is not a weak embedding. It generalizes a recent technique developed for the case that G is a cycle and the embedding is a simple polygon [1], and combines local constraints on the orientation of subgraphs directly, thereby eliminating the need for solving large systems of linear equations.},
author = {Akitaya, Hugo and Fulek, Radoslav and Tóth, Csaba},
location = {New Orleans, LA, USA},
pages = {274 -- 292},
publisher = {ACM},
title = {{Recognizing weak embeddings of graphs}},
doi = {10.1137/1.9781611975031.20},
year = {2018},
}
@article{793,
abstract = {Let P be a finite point set in the plane. A cordinary triangle in P is a subset of P consisting of three non-collinear points such that each of the three lines determined by the three points contains at most c points of P . Motivated by a question of Erdös, and answering a question of de Zeeuw, we prove that there exists a constant c > 0such that P contains a c-ordinary triangle, provided that P is not contained in the union of two lines. Furthermore, the number of c-ordinary triangles in P is Ω(| P |). },
author = {Fulek, Radoslav and Mojarrad, Hossein and Naszódi, Márton and Solymosi, József and Stich, Sebastian and Szedlák, May},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
pages = {28 -- 31},
publisher = {Elsevier},
title = {{On the existence of ordinary triangles}},
doi = {10.1016/j.comgeo.2017.07.002},
volume = {66},
year = {2017},
}
@article{794,
abstract = {We show that c-planarity is solvable in quadratic time for flat clustered graphs with three clusters if the combinatorial embedding of the underlying graph is fixed. In simpler graph-theoretical terms our result can be viewed as follows. Given a graph G with the vertex set partitioned into three parts embedded on a 2-sphere, our algorithm decides if we can augment G by adding edges without creating an edge-crossing so that in the resulting spherical graph the vertices of each part induce a connected sub-graph. We proceed by a reduction to the problem of testing the existence of a perfect matching in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.},
author = {Fulek, Radoslav},
journal = {Computational Geometry: Theory and Applications},
pages = {1 -- 13},
publisher = {Elsevier},
title = {{C-planarity of embedded cyclic c-graphs}},
doi = {10.1016/j.comgeo.2017.06.016},
volume = {66},
year = {2017},
}
@article{795,
abstract = {We introduce a common generalization of the strong Hanani–Tutte theorem and the weak Hanani–Tutte theorem: if a graph G has a drawing D in the plane where every pair of independent edges crosses an even number of times, then G has a planar drawing preserving the rotation of each vertex whose incident edges cross each other evenly in D. The theorem is implicit in the proof of the strong Hanani–Tutte theorem by Pelsmajer, Schaefer and Štefankovič. We give a new, somewhat simpler proof.},
author = {Fulek, Radoslav and Kynčl, Jan and Pálvölgyi, Dömötör},
issn = {10778926},
journal = {Electronic Journal of Combinatorics},
number = {3},
publisher = {International Press},
title = {{Unified Hanani Tutte theorem}},
volume = {24},
year = {2017},
}
@article{534,
abstract = {We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.},
author = {Burton, Benjamin and De Mesmay, Arnaud N and Wagner, Uli},
issn = {01795376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {871 -- 888},
publisher = {Springer},
title = {{Finding non-orientable surfaces in 3-Manifolds}},
doi = {10.1007/s00454-017-9900-0},
volume = {58},
year = {2017},
}
@article{568,
abstract = {We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).},
author = {Franek, Peter and Krcál, Marek},
issn = {15320073},
journal = {Homology, Homotopy and Applications},
number = {2},
pages = {313 -- 342},
publisher = {International Press},
title = {{Persistence of zero sets}},
doi = {10.4310/HHA.2017.v19.n2.a16},
volume = {19},
year = {2017},
}
@article{610,
abstract = {The fact that the complete graph K5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph Kn embeds in a closed surface M (other than the Klein bottle) if and only if (n−3)(n−4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 1. Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k − 1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized Heawood inequality holds: (k+1 n−k−1) ≤ (k+1 2k+1)bk. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk(k 2k+2)+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k−1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.},
author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {841 -- 866},
publisher = {Springer},
title = {{On generalized Heawood inequalities for manifolds: A van Kampen–Flores type nonembeddability result}},
doi = {10.1007/s11856-017-1607-7},
volume = {222},
year = {2017},
}
@inproceedings{6517,
abstract = {A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a drawing of a planar graph G in the plane is approximable by an embedding, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e., the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs with fixed embeddings. To the best of our knowledge an analogous result was previously known essentially only when G is a cycle.},
author = {Fulek, Radoslav},
location = {Phuket, Thailand},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Embedding graphs into embedded graphs}},
doi = {10.4230/LIPICS.ISAAC.2017.34},
volume = {92},
year = {2017},
}
@inproceedings{683,
abstract = {Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well known that any triangulation of a point set can be reconfigured to any other triangulation by some sequence of flips. We explore this question in the setting where each edge of a triangulation has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that every labelled triangulation of a point set can be reconfigured to every other labelled triangulation via a sequence of flips, but we characterize when this is possible. There is an obvious necessary condition: for each label l, if edge e has label l in the first triangulation and edge f has label l in the second triangulation, then there must be some sequence of flips that moves label l from e to f, ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be simultaneously mapped to their destination if and only if each label individually can be mapped to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence exists, and we prove an upper bound of O(n7) on the length of the flip sequence. Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows from a result of Orden and Santos; we give a different proof based on a shelling argument). The dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its 1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.},
author = {Lubiw, Anna and Masárová, Zuzana and Wagner, Uli},
location = {Brisbane, Australia},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{A proof of the orbit conjecture for flipping edge labelled triangulations}},
doi = {10.4230/LIPIcs.SoCG.2017.49},
volume = {77},
year = {2017},
}
@inproceedings{688,
abstract = {We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. },
author = {Edelsbrunner, Herbert and Wagner, Hubert},
issn = {18688969},
location = {Brisbane, Australia},
pages = {391--3916},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Topological data analysis with Bregman divergences}},
doi = {10.4230/LIPIcs.SoCG.2017.39},
volume = {77},
year = {2017},
}
@article{701,
abstract = {A d-dimensional simplex S is called a k-reptile (or a k-reptile simplex) if it can be tiled by k simplices with disjoint interiors that are all mutually congruent and similar to S. For d = 2, triangular k-reptiles exist for all k of the form a^2, 3a^2 or a^2+b^2 and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, the only k-reptile simplices that are known for d ≥ 3, have k = m^d, where m is a positive integer. We substantially simplify the proof by Matoušek and the second author that for d = 3, k-reptile tetrahedra can exist only for k = m^3. We then prove a weaker analogue of this result for d = 4 by showing that four-dimensional k-reptile simplices can exist only for k = m^2.},
author = {Kynčl, Jan and Patakova, Zuzana},
issn = {10778926},
journal = {The Electronic Journal of Combinatorics},
number = {3},
pages = {1--44},
publisher = {International Press},
title = {{On the nonexistence of k reptile simplices in ℝ^3 and ℝ^4}},
volume = {24},
year = {2017},
}
@article{1073,
abstract = {Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G. Assuming that Y is d-connected and dimX≤2d, for some d≥1, we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps |X|→|Y|; the existence of such a map can be decided even for dimX≤2d+1. This yields the first algorithm for deciding topological embeddability of a k-dimensional finite simplicial complex into Rn under the condition k≤23n−1. More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.},
author = {Čadek, Martin and Krcál, Marek and Vokřínek, Lukáš},
issn = {01795376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {915 -- 965},
publisher = {Springer},
title = {{Algorithmic solvability of the lifting extension problem}},
doi = {10.1007/s00454-016-9855-6},
volume = {54},
year = {2017},
}
@article{1113,
abstract = {A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth.},
author = {Fulek, Radoslav and Pelsmajer, Michael and Schaefer, Marcus},
journal = {Journal of Graph Algorithms and Applications},
number = {1},
pages = {135 -- 154},
publisher = {Brown University},
title = {{Hanani-Tutte for radial planarity}},
doi = {10.7155/jgaa.00408},
volume = {21},
year = {2017},
}
@inbook{424,
abstract = {We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of Rd such that βi(∩G)≤b for any G⊊F and every 0 ≤ i ≤ [d/2]-1 then F has Helly number at most h(b, d). Here βi denotes the reduced Z2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these [d/2] first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map C*(K)→C*(Rd).},
author = {Goaoc, Xavier and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
booktitle = {A Journey through Discrete Mathematics: A Tribute to Jiri Matousek},
editor = {Loebl, Martin and Nešetřil, Jaroslav and Thomas, Robin},
isbn = {978-331944479-6},
pages = {407 -- 447},
publisher = {Springer},
title = {{Bounding helly numbers via betti numbers}},
doi = {10.1007/978-3-319-44479-6_17},
year = {2017},
}
@article{1282,
abstract = {We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model Xk(n, p) of random k-dimensional simplicial complexes on n vertices. We show that for p = Ω(logn/n), the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of (k - 2)-dimensional faces. Garland’s result concerns the Laplacian; we develop an analogous result for the adjacency matrix. The same arguments apply to other models of random complexes which allow for dependencies between the choices of k-dimensional simplices. In the second part of the paper, we apply this to the question of possible higher-dimensional analogues of the discrete Cheeger inequality, which in the classical case of graphs relates the eigenvalues of a graph and its edge expansion. It is very natural to ask whether this generalizes to higher dimensions and, in particular, whether the eigenvalues of the higher-dimensional Laplacian capture the notion of coboundary expansion—a higher-dimensional generalization of edge expansion that arose in recent work of Linial and Meshulam and of Gromov; this question was raised, for instance, by Dotterrer and Kahle. We show that this most straightforward version of a higher-dimensional discrete Cheeger inequality fails, in quite a strong way: For every k ≥ 2 and n ∈ N, there is a k-dimensional complex Yn k on n vertices that has strong spectral expansion properties (all nontrivial eigenvalues of the normalised k-dimensional Laplacian lie in the interval [1−O(1/√1), 1+0(1/√1]) but whose coboundary expansion is bounded from above by O(log n/n) and so tends to zero as n → ∞; moreover, Yn k can be taken to have vanishing integer homology in dimension less than k.},
author = {Gundert, Anna and Wagner, Uli},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {545 -- 582},
publisher = {Springer},
title = {{On eigenvalues of random complexes}},
doi = {10.1007/s11856-016-1419-1},
volume = {216},
year = {2016},
}
@inproceedings{1348,
abstract = {A drawing in the plane (ℝ2) of a graph G = (V,E) equipped with a function γ : V → ℕ is x-bounded if (i) x(u) < x(v) whenever γ(u) < γ(v) and (ii) γ(u) ≤ γ(w) ≤ γ(v), where uv ∈ E and γ(u) ≤ γ(v), whenever x(w) ∈ x(uv), where x(.) denotes the projection to the xaxis.We prove a characterization of isotopy classes of embeddings of connected graphs equipped with γ in the plane containing an x-bounded embedding.Then we present an efficient algorithm, which relies on our result, for testing the existence of an x-bounded embedding if the given graph is a forest.This partially answers a question raised recently by Angelini et al.and Chang et al., and proves that c-planarity testing of flat clustered graphs with three clusters is tractable when the underlying abstract graph is a forest.},
author = {Fulek, Radoslav},
location = {Helsinki, Finland},
pages = {31 -- 42},
publisher = {Springer},
title = {{Bounded embeddings of graphs in the plane}},
doi = {10.1007/978-3-319-44543-4_3},
volume = {9843},
year = {2016},
}
@inproceedings{1378,
abstract = {We give a detailed and easily accessible proof of Gromov's Topological Overlap Theorem. Let X be a finite simplicial complex or, more generally, a finite polyhedral cell complex of dimension d. Informally, the theorem states that if X has sufficiently strong higher-dimensional expansion properties (which generalize edge expansion of graphs and are defined in terms of cellular cochains of X) then X has the following topological overlap property: for every continuous map X → ℝd there exists a point p ∈ ℝd whose preimage intersects a positive fraction μ > 0 of the d-cells of X. More generally, the conclusion holds if ℝd is replaced by any d-dimensional piecewise-linear (PL) manifold M, with a constant μ that depends only on d and on the expansion properties of X, but not on M.},
author = {Dotterrer, Dominic and Kaufman, Tali and Wagner, Uli},
location = {Medford, MA, USA},
pages = {35.1 -- 35.10},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing},
title = {{On expansion and topological overlap}},
doi = {10.4230/LIPIcs.SoCG.2016.35},
volume = {51},
year = {2016},
}
@inproceedings{1379,
abstract = {We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.},
author = {Burton, Benjamin and De Mesmay, Arnaud N and Wagner, Uli},
location = {Medford, MA, USA},
pages = {24.1 -- 24.15},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing},
title = {{Finding non-orientable surfaces in 3-manifolds}},
doi = {10.4230/LIPIcs.SoCG.2016.24},
volume = {51},
year = {2016},
}
@inproceedings{1381,
abstract = {Motivated by Tverberg-type problems in topological combinatorics and by classical results about embeddings (maps without double points), we study the question whether a finite simplicial complex K can be mapped into double-struck Rd without higher-multiplicity intersections. We focus on conditions for the existence of almost r-embeddings, i.e., maps f : K → double-struck Rd such that f(σ1) ∩ ⋯ ∩ f(σr) = ∅ whenever σ1, ..., σr are pairwise disjoint simplices of K. Generalizing the classical Haefliger-Weber embeddability criterion, we show that a well-known necessary deleted product condition for the existence of almost r-embeddings is sufficient in a suitable r-metastable range of dimensions: If rd ≥ (r + 1) dim K + 3, then there exists an almost r-embedding K → double-struck Rd if and only if there exists an equivariant map (K)Δ r → Sr Sd(r-1)-1, where (K)Δ r is the deleted r-fold product of K, the target Sd(r-1)-1 is the sphere of dimension d(r - 1) - 1, and Sr is the symmetric group. This significantly extends one of the main results of our previous paper (which treated the special case where d = rk and dim K = (r - 1)k for some k ≥ 3), and settles an open question raised there.},
author = {Mabillard, Isaac and Wagner, Uli},
location = {Medford, MA, USA},
pages = {51.1 -- 51.12},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH},
title = {{Eliminating higher-multiplicity intersections, II. The deleted product criterion in the r-metastable range}},
doi = {10.4230/LIPIcs.SoCG.2016.51},
volume = {51},
year = {2016},
}
@article{1408,
abstract = {The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.},
author = {Franek, Peter and Krcál, Marek},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {126 -- 164},
publisher = {Springer},
title = {{On computability and triviality of well groups}},
doi = {10.1007/s00454-016-9794-2},
volume = {56},
year = {2016},
}
@article{1411,
abstract = {We consider two systems (α1, …, αm) and (β1, …,βn) of simple curves drawn on a compact two-dimensional surface M with boundary. Each αi and each βj is either an arc meeting the boundary of M at its two endpoints, or a closed curve. The αi are pairwise disjoint except for possibly sharing endpoints, and similarly for the βj. We want to “untangle” the βj from the ai by a self-homeomorphism of M; more precisely, we seek a homeomorphism φ:M→M fixing the boundary of M pointwise such that the total number of crossings of the ai with the φ(βj) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3-manifolds. We prove that if M is planar, i.e., a sphere with h ≥ 0 boundary components (“holes”), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface M with h holes and of (orientable or nonorientable) genus g ≥ 0, we obtain an O((m + n)4) upper bound, again independent of h and g. The proofs rely, among other things, on a result concerning simultaneous planar drawings of graphs by Erten and Kobourov.},
author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli},
journal = {Israel Journal of Mathematics},
number = {1},
pages = {37 -- 79},
publisher = {Springer},
title = {{Untangling two systems of noncrossing curves}},
doi = {10.1007/s11856-016-1294-9},
volume = {212},
year = {2016},
}
@article{1522,
abstract = {We classify smooth Brunnian (i.e., unknotted on both components) embeddings (S2 × S1) ⊔ S3 → ℝ6. Any Brunnian embedding (S2 × S1) ⊔ S3 → ℝ6 is isotopic to an explicitly constructed embedding fk,m,n for some integers k, m, n such that m ≡ n (mod 2). Two embeddings fk,m,n and fk′ ,m′,n′ are isotopic if and only if k = k′, m ≡ m′ (mod 2k) and n ≡ n′ (mod 2k). We use Haefliger’s classification of embeddings S3 ⊔ S3 → ℝ6 in our proof. The relation between the embeddings (S2 × S1) ⊔ S3 → ℝ6 and S3 ⊔ S3 → ℝ6 is not trivial, however. For example, we show that there exist embeddings f: (S2 ×S1) ⊔ S3 → ℝ6 and g, g′ : S3 ⊔ S3 → ℝ6 such that the componentwise embedded connected sum f # g is isotopic to f # g′ but g is not isotopic to g′.},
author = {Avvakumov, Serhii},
journal = {Moscow Mathematical Journal},
number = {1},
pages = {1 -- 25},
publisher = {Independent University of Moscow},
title = {{The classification of certain linked 3-manifolds in 6-space}},
volume = {16},
year = {2016},
}
@article{1523,
abstract = {For random graphs, the containment problem considers the probability that a binomial random graph G(n, p) contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well known that the (sharp) threshold is at p = 1/n. We consider a natural analogue of this question for higher-dimensional random complexes Xk(n, p), first studied by Cohen, Costa, Farber and Kappeler for k = 2. Improving previous results, we show that p = Θ(1/ √n) is the (coarse) threshold for containing a subdivision of any fixed complete 2-complex. For higher dimensions k > 2, we get that p = O(n−1/k) is an upper bound for the threshold probability of containing a subdivision of a fixed k-dimensional complex.},
author = {Gundert, Anna and Wagner, Uli},
journal = {Proceedings of the American Mathematical Society},
number = {4},
pages = {1815 -- 1828},
publisher = {American Mathematical Society},
title = {{On topological minors in random simplicial complexes}},
doi = {10.1090/proc/12824},
volume = {144},
year = {2016},
}
@inproceedings{1164,
abstract = {A drawing of a graph G is radial if the vertices of G are placed on concentric circles C1, … , Ck with common center c, and edges are drawn radially: every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. A pair of edges e and f in a graph is independent if e and f do not share a vertex. We show that a graph G is radial planar if G has a radial drawing in which every two independent edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the strong Hanani-Tutte theorem for radial planarity. This characterization yields a very simple algorithm for radial planarity testing.},
author = {Fulek, Radoslav and Pelsmajer, Michael and Schaefer, Marcus},
location = {Athens, Greece},
pages = {468 -- 481},
publisher = {Springer},
title = {{Hanani-Tutte for radial planarity II}},
doi = {10.1007/978-3-319-50106-2_36},
volume = {9801},
year = {2016},
}
@inproceedings{1165,
abstract = {We show that c-planarity is solvable in quadratic time for flat clustered graphs with three clusters if the combinatorial embedding of the underlying graph is fixed. In simpler graph-theoretical terms our result can be viewed as follows. Given a graph G with the vertex set partitioned into three parts embedded on a 2-sphere, our algorithm decides if we can augment G by adding edges without creating an edge-crossing so that in the resulting spherical graph the vertices of each part induce a connected sub-graph. We proceed by a reduction to the problem of testing the existence of a perfect matching in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.},
author = {Fulek, Radoslav},
location = {Athens, Greece},
pages = {94 -- 106},
publisher = {Springer},
title = {{C-planarity of embedded cyclic c-graphs}},
doi = {10.1007/978-3-319-50106-2_8},
volume = {9801 },
year = {2016},
}
@inproceedings{1237,
abstract = {Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem.},
author = {Krcál, Marek and Pilarczyk, Pawel},
location = {Marseille, France},
pages = {140 -- 151},
publisher = {Springer},
title = {{Computation of cubical Steenrod squares}},
doi = {10.1007/978-3-319-39441-1_13},
volume = {9667},
year = {2016},
}
@phdthesis{1123,
abstract = {Motivated by topological Tverberg-type problems in topological combinatorics and by classical
results about embeddings (maps without double points), we study the question whether a finite
simplicial complex K can be mapped into Rd without triple, quadruple, or, more generally, r-fold points (image points with at least r distinct preimages), for a given multiplicity r ≤ 2. In particular, we are interested in maps f : K → Rd that have no global r -fold intersection points, i.e., no r -fold points with preimages in r pairwise disjoint simplices of K , and we seek necessary and sufficient conditions for the existence of such maps.
We present higher-multiplicity analogues of several classical results for embeddings, in particular of the completeness of the Van Kampen obstruction for embeddability of k -dimensional
complexes into R2k , k ≥ 3. Speciffically, we show that under suitable restrictions on the dimensions(viz., if dimK = (r ≥ 1)k and d = rk \ for some k ≥ 3), a well-known deleted product criterion (DPC ) is not only necessary but also sufficient for the existence of maps without global r -fold points. Our main technical tool is a higher-multiplicity version of the classical Whitney trick , by which pairs of isolated r -fold points of opposite sign can be eliminated by local modiffications of the map, assuming codimension d – dimK ≥ 3.
An important guiding idea for our work was that suffciency of the DPC, together with an old
result of Özaydin's on the existence of equivariant maps, might yield an approach to disproving the remaining open cases of the the long-standing topological Tverberg conjecture , i.e., to construct maps from the N -simplex σN to Rd without r-Tverberg points when r not a prime power and
N = (d + 1)(r – 1). Unfortunately, our proof of the sufficiency of the DPC requires codimension d – dimK ≥ 3, which is not satisfied for K = σN .
In 2015, Frick [16] found a very elegant way to overcome this \codimension 3 obstacle" and
to construct the first counterexamples to the topological Tverberg conjecture for all parameters(d; r ) with d ≥ 3r + 1 and r not a prime power, by a reduction1 to a suitable lower-dimensional skeleton, for which the codimension 3 restriction is satisfied and maps without r -Tverberg points exist by Özaydin's result and sufficiency of the DPC.
In this thesis, we present a different construction (which does not use the constraint method) that yields counterexamples for d ≥ 3r , r not a prime power. },
author = {Mabillard, Isaac},
pages = {55},
publisher = {IST Austria},
title = {{Eliminating higher-multiplicity intersections: an r-fold Whitney trick for the topological Tverberg conjecture}},
year = {2016},
}
@article{1688,
abstract = {We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant (Formula presented.) such that whenever (Formula presented.) are n-element subsets of (Formula presented.), we can find a point (Formula presented.) and subsets (Formula presented.) for every i∈[d+1], each of size at least cdn, such that p belongs to all rainbowd-simplices determined by (Formula presented.) simplices with one vertex in each Yi. We show a super-exponentially decreasing upper bound (Formula presented.). The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with (Formula presented.), which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with (Formula presented.). In our construction for the upper bound, we use the fact that the minimum solid angle of every d-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d+1 separations are necessary, compared to 2d separations in the original proof. We also provide a measure version of Pach’s theorem.},
author = {Karasev, Roman and Kynčl, Jan and Paták, Pavel and Patakova, Zuzana and Tancer, Martin},
journal = {Discrete & Computational Geometry},
number = {3},
pages = {610 -- 636},
publisher = {Springer},
title = {{Bounds for Pach's selection theorem and for the minimum solid angle in a simplex}},
doi = {10.1007/s00454-015-9720-z},
volume = {54},
year = {2015},
}
@article{1730,
abstract = {How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart). Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki (Graph structure theory. Contemporary Mathematics, vol. 147, 1993), a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov’s systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions. Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length O(g^(3/2)n^(1/2)) for any triangulated combinatorial surface of genus g with n triangles, and describe an O(gn)-time algorithm to compute such a decomposition. Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.},
author = {Colin De Verdière, Éric and Hubard, Alfredo and De Mesmay, Arnaud N},
journal = {Discrete & Computational Geometry},
number = {3},
pages = {587 -- 620},
publisher = {Springer},
title = {{Discrete systolic inequalities and decompositions of triangulated surfaces}},
doi = {10.1007/s00454-015-9679-9},
volume = {53},
year = {2015},
}
@inproceedings{1510,
abstract = {The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. },
author = {Franek, Peter and Krcál, Marek},
location = {Eindhoven, Netherlands},
pages = {842 -- 856},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{On computability and triviality of well groups}},
doi = {10.4230/LIPIcs.SOCG.2015.842},
volume = {34},
year = {2015},
}
@inproceedings{1511,
abstract = {The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.},
author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
location = {Eindhoven, Netherlands},
pages = {476 -- 490},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result}},
doi = {10.4230/LIPIcs.SOCG.2015.476},
volume = {34 },
year = {2015},
}
@inproceedings{1512,
abstract = {We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b,d) such that the following holds. If F is a finite family of subsets of R^d such that the ith reduced Betti number (with Z_2 coefficients in singular homology) of the intersection of any proper subfamily G of F is at most b for every non-negative integer i less or equal to (d-1)/2, then F has Helly number at most h(b,d). These topological conditions are sharp: not controlling any of these first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map from C_*(K) to C_*(R^d). Both techniques are of independent interest.},
author = {Goaoc, Xavier and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
location = {Eindhoven, Netherlands},
pages = {507 -- 521},
publisher = {ACM},
title = {{Bounding Helly numbers via Betti numbers}},
doi = {10.4230/LIPIcs.SOCG.2015.507},
volume = {34},
year = {2015},
}
@inproceedings{1595,
abstract = {A drawing of a graph G is radial if the vertices of G are placed on concentric circles C1, . . . , Ck with common center c, and edges are drawn radially: every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing- free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Tóth.},
author = {Fulek, Radoslav and Pelsmajer, Michael and Schaefer, Marcus},
location = {Los Angeles, CA, USA},
pages = {99 -- 110},
publisher = {Springer},
title = {{Hanani-Tutte for radial planarity}},
doi = {10.1007/978-3-319-27261-0_9},
volume = {9411},
year = {2015},
}
@inproceedings{1596,
abstract = {Let C={C1,...,Cn} denote a collection of translates of a regular convex k-gon in the plane with the stacking order. The collection C forms a visibility clique if for everyi < j the intersection Ci and (Ci ∩ Cj)\⋃i<l<jCl =∅.elements that are stacked between them, i.e., We show that if C forms a visibility clique its size is bounded from above by O(k4) thereby improving the upper bound of 22k from the aforementioned paper. We also obtain an upper bound of 22(k/2)+2 on the size of a visibility clique for homothetes of a convex (not necessarily regular) k-gon.},
author = {Fulek, Radoslav and Radoičić, Radoš},
location = {Los Angeles, CA, United States},
pages = {373 -- 379},
publisher = {Springer},
title = {{Vertical visibility among parallel polygons in three dimensions}},
doi = {10.1007/978-3-319-27261-0_31},
volume = {9411},
year = {2015},
}
@article{1642,
abstract = {The Hanani-Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani-Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident to at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm.},
author = {Fulek, Radoslav and Kynčl, Jan and Malinovič, Igor and Pálvölgyi, Dömötör},
journal = {Electronic Journal of Combinatorics},
number = {4},
publisher = {Electronic Journal of Combinatorics},
title = {{Clustered planarity testing revisited}},
volume = {22},
year = {2015},
}
@article{1682,
abstract = {We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings.},
author = {Franek, Peter and Krcál, Marek},
journal = {Journal of the ACM},
number = {4},
publisher = {ACM},
title = {{Robust satisfiability of systems of equations}},
doi = {10.1145/2751524},
volume = {62},
year = {2015},
}
@inproceedings{1685,
abstract = {Given a graph G cellularly embedded on a surface Σ of genus g, a cut graph is a subgraph of G such that cutting Σ along G yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε > 0, we show how to compute a (1 + ε) approximation of the shortest cut graph in time f(ε, g)n3.
Our techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Rué, Sau and Thilikos, which may be of independent interest.},
author = {Cohen Addad, Vincent and De Mesmay, Arnaud N},
location = {Patras, Greece},
pages = {386 -- 398},
publisher = {Springer},
title = {{A fixed parameter tractable approximation scheme for the optimal cut graph of a surface}},
doi = {10.1007/978-3-662-48350-3_33},
volume = {9294},
year = {2015},
}
@unpublished{8183,
abstract = {We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb R^d$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb R^d$ such that the images of any $r$
pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of
the $(d+1)(r-1)$-simplex in $\mathbb R^d$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. \"Ozaydin, M. Gromov, P. Blagojevi\'c, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R^{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R^{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S^3 \sqcup S^3\sqcup S^3\to \mathbb R^5$ up to ornament
concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample.},
author = {Avvakumov, Sergey and Mabillard, Isaac and Skopenkov, A. and Wagner, Uli},
booktitle = {arXiv},
title = {{Eliminating higher-multiplicity intersections, III. Codimension 2}},
year = {2015},
}
@article{1842,
abstract = {We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices.},
author = {Cibulka, Josef and Gao, Pu and Krcál, Marek and Valla, Tomáš and Valtr, Pavel},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {64 -- 79},
publisher = {Springer},
title = {{On the geometric ramsey number of outerplanar graphs}},
doi = {10.1007/s00454-014-9646-x},
volume = {53},
year = {2014},
}
@article{2154,
abstract = {A result of Boros and Füredi (d = 2) and of Bárány (arbitrary d) asserts that for every d there exists cd > 0 such that for every n-point set P ⊂ ℝd, some point of ℝd is covered by at least (Formula presented.) of the d-simplices spanned by the points of P. The largest possible value of cd has been the subject of ongoing research. Recently Gromov improved the existing lower bounds considerably by introducing a new, topological proof method. We provide an exposition of the combinatorial component of Gromov's approach, in terms accessible to combinatorialists and discrete geometers, and we investigate the limits of his method. In particular, we give tighter bounds on the cofilling profiles for the (n - 1)-simplex. These bounds yield a minor improvement over Gromov's lower bounds on cd for large d, but they also show that the room for further improvement through the cofilling profiles alone is quite small. We also prove a slightly better lower bound for c3 by an approach using an additional structure besides the cofilling profiles. We formulate a combinatorial extremal problem whose solution might perhaps lead to a tight lower bound for cd.},
author = {Matoušek, Jiří and Wagner, Uli},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {1 -- 33},
publisher = {Springer},
title = {{On Gromov's method of selecting heavily covered points}},
doi = {10.1007/s00454-014-9584-7},
volume = {52},
year = {2014},
}
@inproceedings{2157,
abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in ℝ3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, i.e., an essential curve in the boundary of X bounding a disk in S3 nX with length bounded by a computable function of the number of tetrahedra of X.},
author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {78 -- 84},
publisher = {ACM},
title = {{Embeddability in the 3 sphere is decidable}},
doi = {10.1145/2582112.2582137},
year = {2014},
}
@article{2184,
abstract = {Given topological spaces X,Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X→ Y. We consider a computational version, where X,Y are given as finite simplicial complexes, and the goal is to compute [X,Y], that is, all homotopy classes of suchmaps.We solve this problem in the stable range, where for some d ≥ 2, we have dim X ≤ 2d-2 and Y is (d-1)-connected; in particular, Y can be the d-dimensional sphere Sd. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A ⊂ X and a map A→ Y and ask whether it extends to a map X → Y, or computing the Z2-index-everything in the stable range. Outside the stable range, the extension problem is undecidable.},
author = {Čadek, Martin and Krcál, Marek and Matoušek, Jiří and Sergeraert, Francis and Vokřínek, Lukáš and Wagner, Uli},
journal = {Journal of the ACM},
number = {3},
publisher = {ACM},
title = {{Computing all maps into a sphere}},
doi = {10.1145/2597629},
volume = {61},
year = {2014},
}
@techreport{7038,
author = {Huszár, Kristóf and Rolinek, Michal},
pages = {5},
publisher = {IST Austria},
title = {{Playful Math - An introduction to mathematical games}},
year = {2014},
}
@inproceedings{2159,
abstract = {Motivated by topological Tverberg-type problems, we consider multiple (double, triple, and higher multiplicity) selfintersection points of maps from finite simplicial complexes (compact polyhedra) into ℝd and study conditions under which such multiple points can be eliminated. The most classical case is that of embeddings (i.e., maps without double points) of a κ-dimensional complex K into ℝ2κ. For this problem, the work of van Kampen, Shapiro, and Wu provides an efficiently testable necessary condition for embeddability (namely, vanishing of the van Kampen ob-struction). For κ ≥ 3, the condition is also sufficient, and yields a polynomial-time algorithm for deciding embeddability: One starts with an arbitrary map f : K→ℝ2κ, which generically has finitely many double points; if k ≥ 3 and if the obstruction vanishes then one can successively remove these double points by local modifications of the map f. One of the main tools is the famous Whitney trick that permits eliminating pairs of double points of opposite intersection sign. We are interested in generalizing this approach to intersection points of higher multiplicity. We call a point y 2 ℝd an r-fold Tverberg point of a map f : Kκ →ℝd if y lies in the intersection f(σ1)∩. ∩f(σr) of the images of r pairwise disjoint simplices of K. The analogue of (non-)embeddability that we study is the problem Tverbergκ r→d: Given a κ-dimensional complex K, does it satisfy a Tverberg-type theorem with parameters r and d, i.e., does every map f : K κ → ℝd have an r-fold Tverberg point? Here, we show that for fixed r, κ and d of the form d = rm and k = (r-1)m, m ≥ 3, there is a polynomial-time algorithm for deciding this (based on the vanishing of a cohomological obstruction, as in the case of embeddings). Our main tool is an r-fold analogue of the Whitney trick: Given r pairwise disjoint simplices of K such that the intersection of their images contains two r-fold Tverberg points y+ and y- of opposite intersection sign, we can eliminate y+ and y- by a local isotopy of f. In a subsequent paper, we plan to develop this further and present a generalization of the classical Haeiger-Weber Theorem (which yields a necessary and sufficient condition for embeddability of κ-complexes into ℝd for a wider range of dimensions) to intersection points of higher multiplicity.},
author = {Mabillard, Isaac and Wagner, Uli},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {171 -- 180},
publisher = {ACM},
title = {{Eliminating Tverberg points, I. An analogue of the Whitney trick}},
doi = {10.1145/2582112.2582134},
year = {2014},
}