@inproceedings{185,
abstract = {We resolve in the affirmative conjectures of A. Skopenkov and Repovš (1998), and M. Skopenkov (2003) generalizing the classical Hanani-Tutte theorem to the setting of approximating maps of graphs on 2-dimensional surfaces by embeddings. Our proof of this result is constructive and almost immediately implies an efficient algorithm for testing whether a given piecewise linear map of a graph in a surface is approximable by an embedding. More precisely, an instance of this problem consists of (i) a graph G whose vertices are partitioned into clusters and whose inter-cluster edges are partitioned into bundles, and (ii) a region R of a 2-dimensional compact surface M given as the union of a set of pairwise disjoint discs corresponding to the clusters and a set of pairwise disjoint "pipes" corresponding to the bundles, connecting certain pairs of these discs. We are to decide whether G can be embedded inside M so that the vertices in every cluster are drawn in the corresponding disc, the edges in every bundle pass only through its corresponding pipe, and every edge crosses the boundary of each disc at most once.},
author = {Fulek, Radoslav and Kynčl, Jan},
isbn = {978-3-95977-066-8},
location = {Budapest, Hungary},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Hanani-Tutte for approximating maps of graphs}},
doi = {10.4230/LIPIcs.SoCG.2018.39},
volume = {99},
year = {2018},
}
@inproceedings{186,
abstract = {A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The ℤ2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3, t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the ℤ2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its ℤ2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces.},
author = {Fulek, Radoslav and Kynčl, Jan},
location = {Budapest, Hungary},
pages = {401 -- 4014},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{The ℤ2-Genus of Kuratowski minors}},
doi = {10.4230/LIPIcs.SoCG.2018.40},
volume = {99},
year = {2018},
}
@article{793,
abstract = {Let P be a finite point set in the plane. A cordinary triangle in P is a subset of P consisting of three non-collinear points such that each of the three lines determined by the three points contains at most c points of P . Motivated by a question of Erdös, and answering a question of de Zeeuw, we prove that there exists a constant c > 0such that P contains a c-ordinary triangle, provided that P is not contained in the union of two lines. Furthermore, the number of c-ordinary triangles in P is Ω(| P |). },
author = {Fulek, Radoslav and Mojarrad, Hossein and Naszódi, Márton and Solymosi, József and Stich, Sebastian and Szedlák, May},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
pages = {28 -- 31},
publisher = {Elsevier},
title = {{On the existence of ordinary triangles}},
doi = {10.1016/j.comgeo.2017.07.002},
volume = {66},
year = {2017},
}
@article{794,
abstract = {We show that c-planarity is solvable in quadratic time for flat clustered graphs with three clusters if the combinatorial embedding of the underlying graph is fixed. In simpler graph-theoretical terms our result can be viewed as follows. Given a graph G with the vertex set partitioned into three parts embedded on a 2-sphere, our algorithm decides if we can augment G by adding edges without creating an edge-crossing so that in the resulting spherical graph the vertices of each part induce a connected sub-graph. We proceed by a reduction to the problem of testing the existence of a perfect matching in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.},
author = {Fulek, Radoslav},
journal = {Computational Geometry: Theory and Applications},
pages = {1 -- 13},
publisher = {Elsevier},
title = {{C-planarity of embedded cyclic c-graphs}},
doi = {10.1016/j.comgeo.2017.06.016},
volume = {66},
year = {2017},
}
@article{795,
abstract = {We introduce a common generalization of the strong Hanani–Tutte theorem and the weak Hanani–Tutte theorem: if a graph G has a drawing D in the plane where every pair of independent edges crosses an even number of times, then G has a planar drawing preserving the rotation of each vertex whose incident edges cross each other evenly in D. The theorem is implicit in the proof of the strong Hanani–Tutte theorem by Pelsmajer, Schaefer and Štefankovič. We give a new, somewhat simpler proof.},
author = {Fulek, Radoslav and Kynčl, Jan and Pálvölgyi, Dömötör},
issn = {10778926},
journal = {Electronic Journal of Combinatorics},
number = {3},
publisher = {International Press},
title = {{Unified Hanani Tutte theorem}},
volume = {24},
year = {2017},
}
@inbook{424,
abstract = {We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of Rd such that βi(∩G)≤b for any G⊊F and every 0 ≤ i ≤ [d/2]-1 then F has Helly number at most h(b, d). Here βi denotes the reduced Z2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these [d/2] first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map C*(K)→C*(Rd).},
author = {Goaoc, Xavier and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
booktitle = {A Journey through Discrete Mathematics: A Tribute to Jiri Matousek},
editor = {Loebl, Martin and Nešetřil, Jaroslav and Thomas, Robin},
isbn = {978-331944479-6},
pages = {407 -- 447},
publisher = {Springer},
title = {{Bounding helly numbers via betti numbers}},
doi = {10.1007/978-3-319-44479-6_17},
year = {2017},
}
@article{534,
abstract = {We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.},
author = {Burton, Benjamin and De Mesmay, Arnaud N and Wagner, Uli},
issn = {01795376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {871 -- 888},
publisher = {Springer},
title = {{Finding non-orientable surfaces in 3-Manifolds}},
doi = {10.1007/s00454-017-9900-0},
volume = {58},
year = {2017},
}
@article{568,
abstract = {We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).},
author = {Franek, Peter and Krcál, Marek},
issn = {15320073},
journal = {Homology, Homotopy and Applications},
number = {2},
pages = {313 -- 342},
publisher = {International Press},
title = {{Persistence of zero sets}},
doi = {10.4310/HHA.2017.v19.n2.a16},
volume = {19},
year = {2017},
}
@article{610,
abstract = {The fact that the complete graph K5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph Kn embeds in a closed surface M (other than the Klein bottle) if and only if (n−3)(n−4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 1. Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k − 1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized Heawood inequality holds: (k+1 n−k−1) ≤ (k+1 2k+1)bk. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk(k 2k+2)+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k−1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.},
author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {841 -- 866},
publisher = {Springer},
title = {{On generalized Heawood inequalities for manifolds: A van Kampen–Flores type nonembeddability result}},
doi = {10.1007/s11856-017-1607-7},
volume = {222},
year = {2017},
}
@inproceedings{6517,
abstract = {A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a drawing of a planar graph G in the plane is approximable by an embedding, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e., the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs with fixed embeddings. To the best of our knowledge an analogous result was previously known essentially only when G is a cycle.},
author = {Fulek, Radoslav},
location = {Phuket, Thailand},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Embedding graphs into embedded graphs}},
doi = {10.4230/LIPICS.ISAAC.2017.34},
volume = {92},
year = {2017},
}