--- _id: '5406' abstract: - lang: eng text: 'We consider the distributed synthesis problem fortemporal logic specifications. Traditionally, the problem has been studied for LTL, and the previous results show that the problem is decidable iff there is no information fork in the architecture. We consider the problem for fragments of LTLand our main results are as follows: (1) We show that the problem is undecidable for architectures with information forks even for the fragment of LTL with temporal operators restricted to next and eventually. (2) For specifications restricted to globally along with non-nested next operators, we establish decidability (in EXPSPACE) for star architectures where the processes receive disjoint inputs, whereas we establish undecidability for architectures containing an information fork-meet structure. (3)Finally, we consider LTL without the next operator, and establish decidability (NEXPTIME-complete) for all architectures for a fragment that consists of a set of safety assumptions, and a set of guarantees where each guarantee is a safety, reachability, or liveness condition.' alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. Distributed Synthesis for LTL Fragments. IST Austria; 2013. doi:10.15479/AT:IST-2013-130-v1-1 apa: Chatterjee, K., Henzinger, T. A., Otop, J., & Pavlogiannis, A. (2013). Distributed synthesis for LTL Fragments. IST Austria. https://doi.org/10.15479/AT:IST-2013-130-v1-1 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Jan Otop, and Andreas Pavlogiannis. Distributed Synthesis for LTL Fragments. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-130-v1-1. ieee: K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, Distributed synthesis for LTL Fragments. IST Austria, 2013. ista: Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. 2013. Distributed synthesis for LTL Fragments, IST Austria, 11p. mla: Chatterjee, Krishnendu, et al. Distributed Synthesis for LTL Fragments. IST Austria, 2013, doi:10.15479/AT:IST-2013-130-v1-1. short: K. Chatterjee, T.A. Henzinger, J. Otop, A. Pavlogiannis, Distributed Synthesis for LTL Fragments, IST Austria, 2013. date_created: 2018-12-12T11:39:09Z date_published: 2013-07-08T00:00:00Z date_updated: 2023-02-21T17:01:26Z day: '08' ddc: - '005' department: - _id: KrCh - _id: ToHe doi: 10.15479/AT:IST-2013-130-v1-1 file: - access_level: open_access checksum: 855513ebaf6f72228800c5fdb522f93c content_type: application/pdf creator: system date_created: 2018-12-12T11:54:18Z date_updated: 2020-07-14T12:46:45Z file_id: '5540' file_name: IST-2013-130-v1+1_Distributed_Synthesis.pdf file_size: 467895 relation: main_file file_date_updated: 2020-07-14T12:46:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '11' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '130' related_material: record: - id: '1376' relation: later_version status: public status: public title: Distributed synthesis for LTL Fragments type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2327' abstract: - lang: eng text: 'We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M′ within distance ρ from M satisfy (or violate) φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification. We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved. We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.' alternative_title: - LNCS author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: Henzinger TA, Otop J. From model checking to model measuring. 2013;8052:273-287. doi:10.1007/978-3-642-40184-8_20 apa: 'Henzinger, T. A., & Otop, J. (2013). From model checking to model measuring. Presented at the CONCUR: Concurrency Theory, Buenos Aires, Argentina: Springer. https://doi.org/10.1007/978-3-642-40184-8_20' chicago: Henzinger, Thomas A, and Jan Otop. “From Model Checking to Model Measuring.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-40184-8_20. ieee: T. A. Henzinger and J. Otop, “From model checking to model measuring,” vol. 8052. Springer, pp. 273–287, 2013. ista: Henzinger TA, Otop J. 2013. From model checking to model measuring. 8052, 273–287. mla: Henzinger, Thomas A., and Jan Otop. From Model Checking to Model Measuring. Vol. 8052, Springer, 2013, pp. 273–87, doi:10.1007/978-3-642-40184-8_20. short: T.A. Henzinger, J. Otop, 8052 (2013) 273–287. conference: end_date: 2013-08-30 location: Buenos Aires, Argentina name: 'CONCUR: Concurrency Theory' start_date: 2013-08-27 date_created: 2018-12-11T11:57:00Z date_published: 2013-08-01T00:00:00Z date_updated: 2023-02-23T12:25:26Z day: '01' ddc: - '005' - '000' department: - _id: ToHe doi: 10.1007/978-3-642-40184-8_20 file: - access_level: open_access checksum: 4c04695c4bfdf2119cd4f5d1babc3e8a content_type: application/pdf creator: system date_created: 2018-12-12T10:17:45Z date_updated: 2020-07-14T12:45:38Z file_id: '5301' file_name: IST-2013-129-v1+1_concur.pdf file_size: 378587 relation: main_file file_date_updated: 2020-07-14T12:45:38Z has_accepted_license: '1' intvolume: ' 8052' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 273 - 287 publication_status: published publisher: Springer publist_id: '4599' pubrep_id: '129' quality_controlled: '1' related_material: record: - id: '5417' relation: earlier_version status: public series_title: Lecture Notes in Computer Science status: public title: From model checking to model measuring type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8052 year: '2013' ... --- _id: '6440' abstract: - lang: eng text: In order to guarantee that each method of a data structure updates the logical state exactly once, al-most all non-blocking implementations employ Compare-And-Swap (CAS) based synchronization. For FIFO queue implementations this translates into concurrent enqueue or dequeue methods competing among themselves to update the same variable, the tail or the head, respectively, leading to high contention and poor scalability. Recent non-blocking queue implementations try to alleviate high contentionby increasing the number of contention points, all the while using CAS-based synchronization. Furthermore, obtaining a wait-free implementation with competition is achieved by additional synchronization which leads to further degradation of performance.In this paper we formalize the notion of competitiveness of a synchronizing statement which can beused as a measure for the scalability of concurrent implementations. We present a new queue implementation, the Speculative Pairing (SP) queue, which, as we show, decreases competitiveness by using Fetch-And-Increment (FAI) instead of CAS. We prove that the SP queue is linearizable and lock-free.We also show that replacing CAS with FAI leads to wait-freedom for dequeue methods without an adverse effect on performance. In fact, our experiments suggest that the SP queue can perform and scale better than the state-of-the-art queue implementations. alternative_title: - IST Austria Technical Report author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Hannes full_name: Payer, Hannes last_name: Payer - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin citation: ama: Henzinger TA, Payer H, Sezgin A. Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues . IST Austria; 2013. doi:10.15479/AT:IST-2013-124-v1-1 apa: Henzinger, T. A., Payer, H., & Sezgin, A. (2013). Replacing competition with cooperation to achieve scalable lock-free FIFO queues . IST Austria. https://doi.org/10.15479/AT:IST-2013-124-v1-1 chicago: Henzinger, Thomas A, Hannes Payer, and Ali Sezgin. Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues . IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-124-v1-1. ieee: T. A. Henzinger, H. Payer, and A. Sezgin, Replacing competition with cooperation to achieve scalable lock-free FIFO queues . IST Austria, 2013. ista: Henzinger TA, Payer H, Sezgin A. 2013. Replacing competition with cooperation to achieve scalable lock-free FIFO queues , IST Austria, 23p. mla: Henzinger, Thomas A., et al. Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues . IST Austria, 2013, doi:10.15479/AT:IST-2013-124-v1-1. short: T.A. Henzinger, H. Payer, A. Sezgin, Replacing Competition with Cooperation to Achieve Scalable Lock-Free FIFO Queues , IST Austria, 2013. date_created: 2019-05-13T14:13:27Z date_published: 2013-06-13T00:00:00Z date_updated: 2020-07-14T23:06:19Z day: '13' ddc: - '000' - '005' department: - _id: ToHe doi: 10.15479/AT:IST-2013-124-v1-1 file: - access_level: open_access checksum: a219ba4eada6cd62befed52262ee15d4 content_type: application/pdf creator: dernst date_created: 2019-05-13T14:11:39Z date_updated: 2020-07-14T12:47:30Z file_id: '6441' file_name: 2013_TechRep_Henzinger.pdf file_size: 549684 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '23' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '124' status: public title: 'Replacing competition with cooperation to achieve scalable lock-free FIFO queues ' type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5747' article_processing_charge: No author: - first_name: Cezara full_name: Dragoi, Cezara id: 2B2B5ED0-F248-11E8-B48F-1D18A9856A87 last_name: Dragoi - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Dragoi C, Gupta A, Henzinger TA. Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates. In: Computer Aided Verification. Vol 8044. CAV. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013:174-190. doi:10.1007/978-3-642-39799-8_11' apa: 'Dragoi, C., Gupta, A., & Henzinger, T. A. (2013). Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates. In Computer Aided Verification (Vol. 8044, pp. 174–190). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39799-8_11' chicago: 'Dragoi, Cezara, Ashutosh Gupta, and Thomas A Henzinger. “Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates.” In Computer Aided Verification, 8044:174–90. CAV. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-39799-8_11.' ieee: 'C. Dragoi, A. Gupta, and T. A. Henzinger, “Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates,” in Computer Aided Verification, vol. 8044, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 174–190.' ista: 'Dragoi C, Gupta A, Henzinger TA. 2013.Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates. In: Computer Aided Verification. vol. 8044, 174–190.' mla: Dragoi, Cezara, et al. “Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates.” Computer Aided Verification, vol. 8044, Springer Berlin Heidelberg, 2013, pp. 174–90, doi:10.1007/978-3-642-39799-8_11. short: C. Dragoi, A. Gupta, T.A. Henzinger, in:, Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 174–190. conference: end_date: 2013-07-19 location: Saint Petersburg, Russia name: CAV 2013 start_date: 2013-07-13 date_created: 2018-12-18T13:10:21Z date_published: 2013-01-01T00:00:00Z date_updated: 2023-09-05T14:16:07Z ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-642-39799-8_11 ec_funded: 1 file: - access_level: open_access checksum: a901cc6b71db08b61c0d4c0cbacc6287 content_type: application/pdf creator: dernst date_created: 2018-12-18T13:13:33Z date_updated: 2020-07-14T12:47:10Z file_id: '5748' file_name: 2013_CAV_Dragoi.pdf file_size: 236480 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 8044' language: - iso: eng oa: 1 oa_version: None page: 174-190 place: Berlin, Heidelberg project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Computer Aided Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783642397981' - '9783642397998' issn: - 0302-9743 publication_status: published publisher: Springer Berlin Heidelberg pubrep_id: '195' quality_controlled: '1' scopus_import: '1' series_title: CAV status: public title: Automatic Linearizability Proofs of Concurrent Objects with Cooperating Updates type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8044 year: '2013' ... --- _id: '1405' abstract: - lang: eng text: "Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency.\r\n\r\nFirst, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point." acknowledgement: "This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous Systems Engineering) and by the ERC Advanced Grant QUAREM (Quantitative Reactve Modeling).\r\nChapter 2, 3, and 4 are joint work with Thomas A. Henzinger and Thomas Wies. Chapter 2 was published in FoSSaCS 2010 as “Forward Analysis of Depth-Bounded Processes” [112]. Chapter 3 was published in VMCAI 2012 as “Ideal Abstractions for Well-Structured Transition Systems” [114]. Chap- ter 5.1 is joint work with Kshitij Bansal, Eric Koskinen, and Thomas Wies. It was published in TACAS 2013 as “Structural Counter Abstraction” [13]. The author’s contribution in this part is mostly related to the implementation. The theory required to understand the method and its implementation is quickly recalled to make the thesis self-contained, but should not be considered as a contribution. For the details of the methods, we refer the reader to the orig- inal publication [13] and the corresponding technical report [14]. Chapter 5.2 is ongoing work with Shahram Esmaeilsabzali, Rupak Majumdar, and Thomas Wies. I also would like to thank the people who supported over the past 4 years. My advisor Thomas A. Henzinger who gave me a lot of freedom to work on projects I was interested in. My collaborators, especially Thomas Wies with whom I worked since the beginning. The members of my thesis committee, Viktor Kun- cak and Rupak Majumdar, who also agreed to advise me. Simon Aeschbacher, Pavol Cerny, Cezara Dragoi, Arjun Radhakrishna, my family, friends and col- leagues who created an enjoyable environment. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Damien full_name: Zufferey, Damien id: 4397AC76-F248-11E8-B48F-1D18A9856A87 last_name: Zufferey orcid: 0000-0002-3197-8736 citation: ama: Zufferey D. Analysis of dynamic message passing programs. 2013. doi:10.15479/at:ista:1405 apa: Zufferey, D. (2013). Analysis of dynamic message passing programs. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:1405 chicago: Zufferey, Damien. “Analysis of Dynamic Message Passing Programs.” Institute of Science and Technology Austria, 2013. https://doi.org/10.15479/at:ista:1405. ieee: D. Zufferey, “Analysis of dynamic message passing programs,” Institute of Science and Technology Austria, 2013. ista: Zufferey D. 2013. Analysis of dynamic message passing programs. Institute of Science and Technology Austria. mla: Zufferey, Damien. Analysis of Dynamic Message Passing Programs. Institute of Science and Technology Austria, 2013, doi:10.15479/at:ista:1405. short: D. Zufferey, Analysis of Dynamic Message Passing Programs, Institute of Science and Technology Austria, 2013. date_created: 2018-12-11T11:51:50Z date_published: 2013-09-05T00:00:00Z date_updated: 2023-09-07T11:36:37Z day: '05' ddc: - '000' degree_awarded: PhD department: - _id: ToHe - _id: GradSch doi: 10.15479/at:ista:1405 ec_funded: 1 file: - access_level: open_access checksum: ed2d7b52933d134e8dc69d569baa284e content_type: application/pdf creator: dernst date_created: 2021-02-22T11:28:36Z date_updated: 2021-02-22T11:28:36Z file_id: '9176' file_name: 2013_Zufferey_thesis_final.pdf file_size: 1514906 relation: main_file success: 1 - access_level: closed checksum: cecc4c4b14225bee973d32e3dba91a55 content_type: application/pdf creator: cchlebak date_created: 2021-11-16T14:42:52Z date_updated: 2021-11-17T13:47:58Z file_id: '10298' file_name: 2013_Zufferey_thesis_final_pdfa.pdf file_size: 1378313 relation: main_file file_date_updated: 2021-11-17T13:47:58Z has_accepted_license: '1' language: - iso: eng main_file_link: - url: http://dzufferey.github.io/files/2013_thesis.pdf month: '09' oa: 1 oa_version: Published Version page: '134' project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5802' related_material: record: - id: '2847' relation: part_of_dissertation status: public - id: '3251' relation: part_of_dissertation status: public - id: '4361' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 title: Analysis of dynamic message passing programs type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2013' ... --- _id: '2847' abstract: - lang: eng text: Depth-Bounded Systems form an expressive class of well-structured transition systems. They can model a wide range of concurrent infinite-state systems including those with dynamic thread creation, dynamically changing communication topology, and complex shared heap structures. We present the first method to automatically prove fair termination of depth-bounded systems. Our method uses a numerical abstraction of the system, which we obtain by systematically augmenting an over-approximation of the system’s reachable states with a finite set of counters. This numerical abstraction can be analyzed with existing termination provers. What makes our approach unique is the way in which it exploits the well-structuredness of the analyzed system. We have implemented our work in a prototype tool and used it to automatically prove liveness properties of complex concurrent systems, including nonblocking algorithms such as Treiber’s stack and several distributed processes. Many of these examples are beyond the scope of termination analyses that are based on traditional counter abstractions. alternative_title: - LNCS author: - first_name: Kshitij full_name: Bansal, Kshitij last_name: Bansal - first_name: Eric full_name: Koskinen, Eric last_name: Koskinen - first_name: Thomas full_name: Wies, Thomas id: 447BFB88-F248-11E8-B48F-1D18A9856A87 last_name: Wies - first_name: Damien full_name: Zufferey, Damien id: 4397AC76-F248-11E8-B48F-1D18A9856A87 last_name: Zufferey orcid: 0000-0002-3197-8736 citation: ama: Bansal K, Koskinen E, Wies T, Zufferey D. Structural Counter Abstraction. Piterman N, Smolka S, eds. 2013;7795:62-77. doi:10.1007/978-3-642-36742-7_5 apa: 'Bansal, K., Koskinen, E., Wies, T., & Zufferey, D. (2013). Structural Counter Abstraction. (N. Piterman & S. Smolka, Eds.). Presented at the TACAS: Tools and Algorithms for the Construction and Analysis of Systems, Rome, Italy: Springer. https://doi.org/10.1007/978-3-642-36742-7_5' chicago: Bansal, Kshitij, Eric Koskinen, Thomas Wies, and Damien Zufferey. “Structural Counter Abstraction.” Edited by Nir Piterman and Scott Smolka. Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-36742-7_5. ieee: K. Bansal, E. Koskinen, T. Wies, and D. Zufferey, “Structural Counter Abstraction,” vol. 7795. Springer, pp. 62–77, 2013. ista: Bansal K, Koskinen E, Wies T, Zufferey D. 2013. Structural Counter Abstraction (eds. N. Piterman & S. Smolka). 7795, 62–77. mla: Bansal, Kshitij, et al. Structural Counter Abstraction. Edited by Nir Piterman and Scott Smolka, vol. 7795, Springer, 2013, pp. 62–77, doi:10.1007/978-3-642-36742-7_5. short: K. Bansal, E. Koskinen, T. Wies, D. Zufferey, 7795 (2013) 62–77. conference: end_date: 2013-03-24 location: Rome, Italy name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2013-03-16 date_created: 2018-12-11T11:59:54Z date_published: 2013-03-01T00:00:00Z date_updated: 2023-09-07T11:36:36Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-642-36742-7_5 ec_funded: 1 editor: - first_name: Nir full_name: Piterman, Nir last_name: Piterman - first_name: Scott full_name: Smolka, Scott last_name: Smolka intvolume: ' 7795' language: - iso: eng main_file_link: - open_access: '1' url: http://arise.or.at/pubpdf/Structural_Counter_Abstraction.pdf month: '03' oa: 1 oa_version: Submitted Version page: 62 - 77 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '3947' quality_controlled: '1' related_material: record: - id: '1405' relation: dissertation_contains status: public scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Structural Counter Abstraction type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7795 year: '2013' ... --- _id: '2445' abstract: - lang: eng text: We develop program synthesis techniques that can help programmers fix concurrency-related bugs. We make two new contributions to synthesis for concurrency, the first improving the efficiency of the synthesized code, and the second improving the efficiency of the synthesis procedure itself. The first contribution is to have the synthesis procedure explore a variety of (sequential) semantics-preserving program transformations. Classically, only one such transformation has been considered, namely, the insertion of synchronization primitives (such as locks). Based on common manual bug-fixing techniques used by Linux device-driver developers, we explore additional, more efficient transformations, such as the reordering of independent instructions. The second contribution is to speed up the counterexample-guided removal of concurrency bugs within the synthesis procedure by considering partial-order traces (instead of linear traces) as counterexamples. A partial-order error trace represents a set of linear (interleaved) traces of a concurrent program all of which lead to the same error. By eliminating a partial-order error trace, we eliminate in a single iteration of the synthesis procedure all linearizations of the partial-order trace. We evaluated our techniques on several simplified examples of real concurrency bugs that occurred in Linux device drivers. alternative_title: - LNCS author: - first_name: Pavol full_name: Cerny, Pavol id: 4DCBEFFE-F248-11E8-B48F-1D18A9856A87 last_name: Cerny - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Arjun full_name: Radhakrishna, Arjun id: 3B51CAC4-F248-11E8-B48F-1D18A9856A87 last_name: Radhakrishna - first_name: Leonid full_name: Ryzhyk, Leonid last_name: Ryzhyk - first_name: Thorsten full_name: Tarrach, Thorsten id: 3D6E8F2C-F248-11E8-B48F-1D18A9856A87 last_name: Tarrach orcid: 0000-0003-4409-8487 citation: ama: 'Cerny P, Henzinger TA, Radhakrishna A, Ryzhyk L, Tarrach T. Efficient synthesis for concurrency by semantics-preserving transformations. In: Vol 8044. Springer; 2013:951-967. doi:10.1007/978-3-642-39799-8_68' apa: 'Cerny, P., Henzinger, T. A., Radhakrishna, A., Ryzhyk, L., & Tarrach, T. (2013). Efficient synthesis for concurrency by semantics-preserving transformations (Vol. 8044, pp. 951–967). Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_68' chicago: Cerny, Pavol, Thomas A Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach. “Efficient Synthesis for Concurrency by Semantics-Preserving Transformations,” 8044:951–67. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_68. ieee: 'P. Cerny, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach, “Efficient synthesis for concurrency by semantics-preserving transformations,” presented at the CAV: Computer Aided Verification, St. Petersburg, Russia, 2013, vol. 8044, pp. 951–967.' ista: 'Cerny P, Henzinger TA, Radhakrishna A, Ryzhyk L, Tarrach T. 2013. Efficient synthesis for concurrency by semantics-preserving transformations. CAV: Computer Aided Verification, LNCS, vol. 8044, 951–967.' mla: Cerny, Pavol, et al. Efficient Synthesis for Concurrency by Semantics-Preserving Transformations. Vol. 8044, Springer, 2013, pp. 951–67, doi:10.1007/978-3-642-39799-8_68. short: P. Cerny, T.A. Henzinger, A. Radhakrishna, L. Ryzhyk, T. Tarrach, in:, Springer, 2013, pp. 951–967. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2023-09-07T11:57:01Z day: '01' ddc: - '000' - '004' department: - _id: ToHe doi: 10.1007/978-3-642-39799-8_68 ec_funded: 1 file: - access_level: open_access checksum: 70c70ca5487faba82262c63e1b678a27 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:37Z date_updated: 2020-07-14T12:45:40Z file_id: '5158' file_name: IST-2014-199-v1+1_cav2013-final.pdf file_size: 365548 relation: main_file file_date_updated: 2020-07-14T12:45:40Z has_accepted_license: '1' intvolume: ' 8044' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 951 - 967 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '4458' pubrep_id: '199' quality_controlled: '1' related_material: record: - id: '1130' relation: dissertation_contains status: public scopus_import: 1 status: public title: Efficient synthesis for concurrency by semantics-preserving transformations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '1384' abstract: - lang: eng text: 'Software model checking, as an undecidable problem, has three possible outcomes: (1) the program satisfies the specification, (2) the program does not satisfy the specification, and (3) the model checker fails. The third outcome usually manifests itself in a space-out, time-out, or one component of the verification tool giving up; in all of these failing cases, significant computation is performed by the verification tool before the failure, but no result is reported. We propose to reformulate the model-checking problem as follows, in order to have the verification tool report a summary of the performed work even in case of failure: given a program and a specification, the model checker returns a condition Ψ - usually a state predicate - such that the program satisfies the specification under the condition Ψ - that is, as long as the program does not leave the states in which Ψ is satisfied. In our experiments, we investigated as one major application of conditional model checking the sequential combination of model checkers with information passing. We give the condition that one model checker produces, as input to a second conditional model checker, such that the verification problem for the second is restricted to the part of the state space that is not covered by the condition, i.e., the second model checker works on the problems that the first model checker could not solve. Our experiments demonstrate that repeated application of conditional model checkers, passing information from one model checker to the next, can significantly improve the verification results and performance, i.e., we can now verify programs that we could not verify before.' acknowledgement: This research was supported by the Canadian NSERC grant RGPIN 341819-07, the ERC Advanced Grant QUAREM, and the Austrian Science Fund NFN RiSE. article_number: '57' author: - first_name: Dirk full_name: Beyer, Dirk last_name: Beyer - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Mehmet full_name: Keremoglu, Mehmet last_name: Keremoglu - first_name: Philipp full_name: Wendler, Philipp last_name: Wendler citation: ama: 'Beyer D, Henzinger TA, Keremoglu M, Wendler P. Conditional model checking: A technique to pass information between verifiers. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM; 2012. doi:10.1145/2393596.2393664' apa: 'Beyer, D., Henzinger, T. A., Keremoglu, M., & Wendler, P. (2012). Conditional model checking: A technique to pass information between verifiers. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. Cary, NC, USA: ACM. https://doi.org/10.1145/2393596.2393664' chicago: 'Beyer, Dirk, Thomas A Henzinger, Mehmet Keremoglu, and Philipp Wendler. “Conditional Model Checking: A Technique to Pass Information between Verifiers.” In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, 2012. https://doi.org/10.1145/2393596.2393664.' ieee: 'D. Beyer, T. A. Henzinger, M. Keremoglu, and P. Wendler, “Conditional model checking: A technique to pass information between verifiers,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Cary, NC, USA, 2012.' ista: 'Beyer D, Henzinger TA, Keremoglu M, Wendler P. 2012. Conditional model checking: A technique to pass information between verifiers. Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. FSE: Foundations of Software Engineering, 57.' mla: 'Beyer, Dirk, et al. “Conditional Model Checking: A Technique to Pass Information between Verifiers.” Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 57, ACM, 2012, doi:10.1145/2393596.2393664.' short: D. Beyer, T.A. Henzinger, M. Keremoglu, P. Wendler, in:, Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, ACM, 2012. conference: end_date: 2012-11-16 location: Cary, NC, USA name: 'FSE: Foundations of Software Engineering' start_date: 2012-11-11 date_created: 2018-12-11T11:51:42Z date_published: 2012-11-01T00:00:00Z date_updated: 2021-01-12T06:50:18Z day: '01' department: - _id: ToHe doi: 10.1145/2393596.2393664 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1109.6926 month: '11' oa: 1 oa_version: Preprint project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering publication_status: published publisher: ACM publist_id: '5826' quality_controlled: '1' scopus_import: 1 status: public title: 'Conditional model checking: A technique to pass information between verifiers' type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '2302' abstract: - lang: eng text: 'We introduce propagation models (PMs), a formalism able to express several kinds of equations that describe the behavior of biochemical reaction networks. Furthermore, we introduce the propagation abstract data type (PADT), which separates concerns regarding different numerical algorithms for the transient analysis of biochemical reaction networks from concerns regarding their implementation, thus allowing for portable and efficient solutions. The state of a propagation abstract data type is given by a vector that assigns mass values to a set of nodes, and its (next) operator propagates mass values through this set of nodes. We propose an approximate implementation of the (next) operator, based on threshold abstraction, which propagates only "significant" mass values and thus achieves a compromise between efficiency and accuracy. Finally, we give three use cases for propagation models: the chemical master equation (CME), the reaction rate equation (RRE), and a hybrid method that combines these two equations. These three applications use propagation models in order to propagate probabilities and/or expected values and variances of the model''s variables.' author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Maria full_name: Mateescu, Maria id: 3B43276C-F248-11E8-B48F-1D18A9856A87 last_name: Mateescu citation: ama: Henzinger TA, Mateescu M. The propagation approach for computing biochemical reaction networks. IEEE ACM Transactions on Computational Biology and Bioinformatics. 2012;10(2):310-322. doi:10.1109/TCBB.2012.91 apa: Henzinger, T. A., & Mateescu, M. (2012). The propagation approach for computing biochemical reaction networks. IEEE ACM Transactions on Computational Biology and Bioinformatics. IEEE. https://doi.org/10.1109/TCBB.2012.91 chicago: Henzinger, Thomas A, and Maria Mateescu. “The Propagation Approach for Computing Biochemical Reaction Networks.” IEEE ACM Transactions on Computational Biology and Bioinformatics. IEEE, 2012. https://doi.org/10.1109/TCBB.2012.91. ieee: T. A. Henzinger and M. Mateescu, “The propagation approach for computing biochemical reaction networks,” IEEE ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 2. IEEE, pp. 310–322, 2012. ista: Henzinger TA, Mateescu M. 2012. The propagation approach for computing biochemical reaction networks. IEEE ACM Transactions on Computational Biology and Bioinformatics. 10(2), 310–322. mla: Henzinger, Thomas A., and Maria Mateescu. “The Propagation Approach for Computing Biochemical Reaction Networks.” IEEE ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 2, IEEE, 2012, pp. 310–22, doi:10.1109/TCBB.2012.91. short: T.A. Henzinger, M. Mateescu, IEEE ACM Transactions on Computational Biology and Bioinformatics 10 (2012) 310–322. date_created: 2018-12-11T11:56:52Z date_published: 2012-07-03T00:00:00Z date_updated: 2021-01-12T06:56:38Z day: '03' department: - _id: ToHe - _id: CaGu doi: 10.1109/TCBB.2012.91 ec_funded: 1 external_id: pmid: - '22778152' intvolume: ' 10' issue: '2' language: - iso: eng month: '07' oa_version: None page: 310 - 322 pmid: 1 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication: IEEE ACM Transactions on Computational Biology and Bioinformatics publication_status: published publisher: IEEE publist_id: '4625' quality_controlled: '1' scopus_import: 1 status: public title: The propagation approach for computing biochemical reaction networks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2012' ... --- _id: '2848' abstract: - lang: eng text: We study evolutionary game theory in a setting where individuals learn from each other. We extend the traditional approach by assuming that a population contains individuals with different learning abilities. In particular, we explore the situation where individuals have different search spaces, when attempting to learn the strategies of others. The search space of an individual specifies the set of strategies learnable by that individual. The search space is genetically given and does not change under social evolutionary dynamics. We introduce a general framework and study a specific example in the context of direct reciprocity. For this example, we obtain the counter intuitive result that cooperation can only evolve for intermediate benefit-to-cost ratios, while small and large benefit-to-cost ratios favor defection. Our paper is a step toward making a connection between computational learning theory and evolutionary game dynamics. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Damien full_name: Zufferey, Damien id: 4397AC76-F248-11E8-B48F-1D18A9856A87 last_name: Zufferey orcid: 0000-0002-3197-8736 - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Chatterjee K, Zufferey D, Nowak M. Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. 2012;301:161-173. doi:10.1016/j.jtbi.2012.02.021 apa: Chatterjee, K., Zufferey, D., & Nowak, M. (2012). Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2012.02.021 chicago: Chatterjee, Krishnendu, Damien Zufferey, and Martin Nowak. “Evolutionary Game Dynamics in Populations with Different Learners.” Journal of Theoretical Biology. Elsevier, 2012. https://doi.org/10.1016/j.jtbi.2012.02.021. ieee: K. Chatterjee, D. Zufferey, and M. Nowak, “Evolutionary game dynamics in populations with different learners,” Journal of Theoretical Biology, vol. 301. Elsevier, pp. 161–173, 2012. ista: Chatterjee K, Zufferey D, Nowak M. 2012. Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. 301, 161–173. mla: Chatterjee, Krishnendu, et al. “Evolutionary Game Dynamics in Populations with Different Learners.” Journal of Theoretical Biology, vol. 301, Elsevier, 2012, pp. 161–73, doi:10.1016/j.jtbi.2012.02.021. short: K. Chatterjee, D. Zufferey, M. Nowak, Journal of Theoretical Biology 301 (2012) 161–173. date_created: 2018-12-11T11:59:55Z date_published: 2012-05-21T00:00:00Z date_updated: 2021-01-12T07:00:12Z day: '21' department: - _id: KrCh - _id: ToHe doi: 10.1016/j.jtbi.2012.02.021 ec_funded: 1 external_id: pmid: - '22394652' intvolume: ' 301' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322297/ month: '05' oa: 1 oa_version: Submitted Version page: 161 - 173 pmid: 1 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3946' quality_controlled: '1' scopus_import: 1 status: public title: Evolutionary game dynamics in populations with different learners type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 301 year: '2012' ... --- _id: '2891' abstract: - lang: eng text: "Quantitative automata are nondeterministic finite automata with edge weights. They value a\r\nrun by some function from the sequence of visited weights to the reals, and value a word by its\r\nminimal/maximal run. They generalize boolean automata, and have gained much attention in\r\nrecent years. Unfortunately, important automaton classes, such as sum, discounted-sum, and\r\nlimit-average automata, cannot be determinized. Yet, the quantitative setting provides the potential\r\nof approximate determinization. We define approximate determinization with respect to\r\na distance function, and investigate this potential.\r\nWe show that sum automata cannot be determinized approximately with respect to any\r\ndistance function. However, restricting to nonnegative weights allows for approximate determinization\r\nwith respect to some distance functions.\r\nDiscounted-sum automata allow for approximate determinization, as the influence of a word’s\r\nsuffix is decaying. However, the naive approach, of unfolding the automaton computations up\r\nto a sufficient level, is shown to be doubly exponential in the discount factor. We provide an\r\nalternative construction that is singly exponential in the discount factor, in the precision, and\r\nin the number of states. We prove matching lower bounds, showing exponential dependency on\r\neach of these three parameters.\r\nAverage and limit-average automata are shown to prohibit approximate determinization with\r\nrespect to any distance function, and this is the case even for two weights, 0 and 1." acknowledgement: We thank Laurent Doyen for great ideas and valuable help in analyzing discounted-sum automata. alternative_title: - LIPIcs author: - first_name: Udi full_name: Boker, Udi id: 31E297B6-F248-11E8-B48F-1D18A9856A87 last_name: Boker - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Boker U, Henzinger TA. Approximate determinization of quantitative automata. In: Leibniz International Proceedings in Informatics. Vol 18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2012:362-373. doi:10.4230/LIPIcs.FSTTCS.2012.362' apa: 'Boker, U., & Henzinger, T. A. (2012). Approximate determinization of quantitative automata. In Leibniz International Proceedings in Informatics (Vol. 18, pp. 362–373). Hyderabad, India: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362' chicago: Boker, Udi, and Thomas A Henzinger. “Approximate Determinization of Quantitative Automata.” In Leibniz International Proceedings in Informatics, 18:362–73. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362. ieee: U. Boker and T. A. Henzinger, “Approximate determinization of quantitative automata,” in Leibniz International Proceedings in Informatics, Hyderabad, India, 2012, vol. 18, pp. 362–373. ista: 'Boker U, Henzinger TA. 2012. Approximate determinization of quantitative automata. Leibniz International Proceedings in Informatics. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 18, 362–373.' mla: Boker, Udi, and Thomas A. Henzinger. “Approximate Determinization of Quantitative Automata.” Leibniz International Proceedings in Informatics, vol. 18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 362–73, doi:10.4230/LIPIcs.FSTTCS.2012.362. short: U. Boker, T.A. Henzinger, in:, Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 362–373. conference: end_date: 2012-12-17 location: Hyderabad, India name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2012-12-15 date_created: 2018-12-11T12:00:10Z date_published: 2012-12-01T00:00:00Z date_updated: 2021-01-12T07:00:31Z day: '01' ddc: - '004' department: - _id: ToHe doi: 10.4230/LIPIcs.FSTTCS.2012.362 ec_funded: 1 file: - access_level: open_access checksum: 88da18d3e2cb2e5011d7d10ce38a3864 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:37Z date_updated: 2020-07-14T12:45:52Z file_id: '4826' file_name: IST-2017-805-v1+1_34.pdf file_size: 559069 relation: main_file file_date_updated: 2020-07-14T12:45:52Z has_accepted_license: '1' intvolume: ' 18' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '12' oa: 1 oa_version: Published Version page: 362 - 373 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication: Leibniz International Proceedings in Informatics publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '3867' pubrep_id: '805' quality_controlled: '1' scopus_import: 1 status: public title: Approximate determinization of quantitative automata tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2012' ... --- _id: '2890' abstract: - lang: eng text: 'Systems are often specified using multiple requirements on their behavior. In practice, these requirements can be contradictory. The classical approach to specification, verification, and synthesis demands more detailed specifications that resolve any contradictions in the requirements. These detailed specifications are usually large, cumbersome, and hard to maintain or modify. In contrast, quantitative frameworks allow the formalization of the intuitive idea that what is desired is an implementation that comes "closest" to satisfying the mutually incompatible requirements, according to a measure of fit that can be defined by the requirements engineer. One flexible framework for quantifying how "well" an implementation satisfies a specification is offered by simulation distances that are parameterized by an error model. We introduce this framework, study its properties, and provide an algorithmic solution for the following quantitative synthesis question: given two (or more) behavioral requirements specified by possibly incompatible finite-state machines, and an error model, find the finite-state implementation that minimizes the maximal simulation distance to the given requirements. Furthermore, we generalize the framework to handle infinite alphabets (for example, realvalued domains). We also demonstrate how quantitative specifications based on simulation distances might lead to smaller and easier to modify specifications. Finally, we illustrate our approach using case studies on error correcting codes and scheduler synthesis.' author: - first_name: Pavol full_name: Cerny, Pavol id: 4DCBEFFE-F248-11E8-B48F-1D18A9856A87 last_name: Cerny - first_name: Sivakanth full_name: Gopi, Sivakanth last_name: Gopi - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Arjun full_name: Radhakrishna, Arjun id: 3B51CAC4-F248-11E8-B48F-1D18A9856A87 last_name: Radhakrishna - first_name: Nishant full_name: Totla, Nishant last_name: Totla citation: ama: 'Cerny P, Gopi S, Henzinger TA, Radhakrishna A, Totla N. Synthesis from incompatible specifications. In: Proceedings of the Tenth ACM International Conference on Embedded Software. ACM; 2012:53-62. doi:10.1145/2380356.2380371' apa: 'Cerny, P., Gopi, S., Henzinger, T. A., Radhakrishna, A., & Totla, N. (2012). Synthesis from incompatible specifications. In Proceedings of the tenth ACM international conference on Embedded software (pp. 53–62). Tampere, Finland: ACM. https://doi.org/10.1145/2380356.2380371' chicago: Cerny, Pavol, Sivakanth Gopi, Thomas A Henzinger, Arjun Radhakrishna, and Nishant Totla. “Synthesis from Incompatible Specifications.” In Proceedings of the Tenth ACM International Conference on Embedded Software, 53–62. ACM, 2012. https://doi.org/10.1145/2380356.2380371. ieee: P. Cerny, S. Gopi, T. A. Henzinger, A. Radhakrishna, and N. Totla, “Synthesis from incompatible specifications,” in Proceedings of the tenth ACM international conference on Embedded software, Tampere, Finland, 2012, pp. 53–62. ista: 'Cerny P, Gopi S, Henzinger TA, Radhakrishna A, Totla N. 2012. Synthesis from incompatible specifications. Proceedings of the tenth ACM international conference on Embedded software. EMSOFT: Embedded Software , 53–62.' mla: Cerny, Pavol, et al. “Synthesis from Incompatible Specifications.” Proceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 53–62, doi:10.1145/2380356.2380371. short: P. Cerny, S. Gopi, T.A. Henzinger, A. Radhakrishna, N. Totla, in:, Proceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 53–62. conference: end_date: 2012-10-12 location: Tampere, Finland name: 'EMSOFT: Embedded Software ' start_date: 2012-10-07 date_created: 2018-12-11T12:00:10Z date_published: 2012-10-01T00:00:00Z date_updated: 2021-01-12T07:00:30Z day: '01' department: - _id: ToHe doi: 10.1145/2380356.2380371 ec_funded: 1 language: - iso: eng month: '10' oa_version: None page: 53 - 62 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the tenth ACM international conference on Embedded software publication_status: published publisher: ACM publist_id: '3868' quality_controlled: '1' scopus_import: 1 status: public title: Synthesis from incompatible specifications type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '2888' abstract: - lang: eng text: Formal verification aims to improve the quality of hardware and software by detecting errors before they do harm. At the basis of formal verification lies the logical notion of correctness, which purports to capture whether or not a circuit or program behaves as desired. We suggest that the boolean partition into correct and incorrect systems falls short of the practical need to assess the behavior of hardware and software in a more nuanced fashion against multiple criteria. alternative_title: - LNCS author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Henzinger TA. Quantitative reactive models. In: Conference Proceedings MODELS 2012. Vol 7590. Springer; 2012:1-2. doi:10.1007/978-3-642-33666-9_1' apa: 'Henzinger, T. A. (2012). Quantitative reactive models. In Conference proceedings MODELS 2012 (Vol. 7590, pp. 1–2). Innsbruck, Austria: Springer. https://doi.org/10.1007/978-3-642-33666-9_1' chicago: Henzinger, Thomas A. “Quantitative Reactive Models.” In Conference Proceedings MODELS 2012, 7590:1–2. Springer, 2012. https://doi.org/10.1007/978-3-642-33666-9_1. ieee: T. A. Henzinger, “Quantitative reactive models,” in Conference proceedings MODELS 2012, Innsbruck, Austria, 2012, vol. 7590, pp. 1–2. ista: 'Henzinger TA. 2012. Quantitative reactive models. Conference proceedings MODELS 2012. MODELS: Model-driven Engineering Languages and Systems, LNCS, vol. 7590, 1–2.' mla: Henzinger, Thomas A. “Quantitative Reactive Models.” Conference Proceedings MODELS 2012, vol. 7590, Springer, 2012, pp. 1–2, doi:10.1007/978-3-642-33666-9_1. short: T.A. Henzinger, in:, Conference Proceedings MODELS 2012, Springer, 2012, pp. 1–2. conference: end_date: 2012-10-05 location: Innsbruck, Austria name: 'MODELS: Model-driven Engineering Languages and Systems' start_date: 2012-09-30 date_created: 2018-12-11T12:00:09Z date_published: 2012-09-01T00:00:00Z date_updated: 2021-01-12T07:00:29Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-642-33666-9_1 ec_funded: 1 intvolume: ' 7590' language: - iso: eng month: '09' oa_version: None page: 1 - 2 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Conference proceedings MODELS 2012 publication_status: published publisher: Springer publist_id: '3870' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative reactive models type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7590 year: '2012' ... --- _id: '2916' abstract: - lang: eng text: The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a quantitative measure for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intu- itively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies. author: - first_name: Pavol full_name: Cerny, Pavol id: 4DCBEFFE-F248-11E8-B48F-1D18A9856A87 last_name: Cerny - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Arjun full_name: Radhakrishna, Arjun id: 3B51CAC4-F248-11E8-B48F-1D18A9856A87 last_name: Radhakrishna citation: ama: 'Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. Interface Simulation Distances. In: Electronic Proceedings in Theoretical Computer Science. Vol 96. EPTCS; 2012:29-42. doi:10.4204/EPTCS.96.3' apa: 'Cerny, P., Chmelik, M., Henzinger, T. A., & Radhakrishna, A. (2012). Interface Simulation Distances. In Electronic Proceedings in Theoretical Computer Science (Vol. 96, pp. 29–42). Napoli, Italy: EPTCS. https://doi.org/10.4204/EPTCS.96.3' chicago: Cerny, Pavol, Martin Chmelik, Thomas A Henzinger, and Arjun Radhakrishna. “Interface Simulation Distances.” In Electronic Proceedings in Theoretical Computer Science, 96:29–42. EPTCS, 2012. https://doi.org/10.4204/EPTCS.96.3. ieee: P. Cerny, M. Chmelik, T. A. Henzinger, and A. Radhakrishna, “Interface Simulation Distances,” in Electronic Proceedings in Theoretical Computer Science, Napoli, Italy, 2012, vol. 96, pp. 29–42. ista: 'Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. 2012. Interface Simulation Distances. Electronic Proceedings in Theoretical Computer Science. GandALF: Games, Automata, Logic, and Formal Verification vol. 96, 29–42.' mla: Cerny, Pavol, et al. “Interface Simulation Distances.” Electronic Proceedings in Theoretical Computer Science, vol. 96, EPTCS, 2012, pp. 29–42, doi:10.4204/EPTCS.96.3. short: P. Cerny, M. Chmelik, T.A. Henzinger, A. Radhakrishna, in:, Electronic Proceedings in Theoretical Computer Science, EPTCS, 2012, pp. 29–42. conference: end_date: 2012-09-08 location: Napoli, Italy name: 'GandALF: Games, Automata, Logic, and Formal Verification' start_date: 2012-09-06 date_created: 2018-12-11T12:00:19Z date_published: 2012-10-07T00:00:00Z date_updated: 2023-02-23T10:12:05Z day: '07' department: - _id: ToHe - _id: KrCh doi: 10.4204/EPTCS.96.3 ec_funded: 1 external_id: arxiv: - '1210.2450' intvolume: ' 96' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1210.2450 month: '10' oa: 1 oa_version: Submitted Version page: 29 - 42 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Electronic Proceedings in Theoretical Computer Science publication_status: published publisher: EPTCS publist_id: '3827' quality_controlled: '1' related_material: record: - id: '1733' relation: later_version status: public scopus_import: 1 status: public title: Interface Simulation Distances type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2012' ... --- _id: '2936' abstract: - lang: eng text: The notion of delays arises naturally in many computational models, such as, in the design of circuits, control systems, and dataflow languages. In this work, we introduce automata with delay blocks (ADBs), extending finite state automata with variable time delay blocks, for deferring individual transition output symbols, in a discrete-time setting. We show that the ADB languages strictly subsume the regular languages, and are incomparable in expressive power to the context-free languages. We show that ADBs are closed under union, concatenation and Kleene star, and under intersection with regular languages, but not closed under complementation and intersection with other ADB languages. We show that the emptiness and the membership problems are decidable in polynomial time for ADBs, whereas the universality problem is undecidable. Finally we consider the linear-time model checking problem, i.e., whether the language of an ADB is contained in a regular language, and show that the model checking problem is PSPACE-complete. Copyright 2012 ACM. acknowledgement: 'This work has been financially supported in part by the European Commission FP7-ICT Cognitive Systems, Interaction, and Robotics under the contract # 270180 (NOPTILUS); by Fundacao para Ciencia e Tecnologia under project PTDC/EEA-CRO/104901/2008 (Modeling and control of Networked vehicle systems in persistent autonomous operations); by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification; FWF NFN Grant No S11407-N23 (RiSE); ERC Start grant (279307: Graph Games); Microsoft faculty fellows award; ERC Advanced grant QUAREM; and FWF Grant No S11403-N23 (RiSE).' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: 'Chatterjee K, Henzinger TA, Prabhu V. Finite automata with time delay blocks. In: Roceedings of the Tenth ACM International Conference on Embedded Software. ACM; 2012:43-52. doi:10.1145/2380356.2380370' apa: 'Chatterjee, K., Henzinger, T. A., & Prabhu, V. (2012). Finite automata with time delay blocks. In roceedings of the tenth ACM international conference on Embedded software (pp. 43–52). Tampere, Finland: ACM. https://doi.org/10.1145/2380356.2380370' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Vinayak Prabhu. “Finite Automata with Time Delay Blocks.” In Roceedings of the Tenth ACM International Conference on Embedded Software, 43–52. ACM, 2012. https://doi.org/10.1145/2380356.2380370. ieee: K. Chatterjee, T. A. Henzinger, and V. Prabhu, “Finite automata with time delay blocks,” in roceedings of the tenth ACM international conference on Embedded software, Tampere, Finland, 2012, pp. 43–52. ista: 'Chatterjee K, Henzinger TA, Prabhu V. 2012. Finite automata with time delay blocks. roceedings of the tenth ACM international conference on Embedded software. EMSOFT: Embedded Software , 43–52.' mla: Chatterjee, Krishnendu, et al. “Finite Automata with Time Delay Blocks.” Roceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 43–52, doi:10.1145/2380356.2380370. short: K. Chatterjee, T.A. Henzinger, V. Prabhu, in:, Roceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 43–52. conference: end_date: 2012-10-12 location: Tampere, Finland name: 'EMSOFT: Embedded Software ' start_date: 2012-10-07 date_created: 2018-12-11T12:00:26Z date_published: 2012-10-01T00:00:00Z date_updated: 2021-01-12T07:39:53Z day: '01' department: - _id: KrCh - _id: ToHe doi: 10.1145/2380356.2380370 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1207.7019 month: '10' oa: 1 oa_version: Preprint page: 43 - 52 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: roceedings of the tenth ACM international conference on Embedded software publication_status: published publisher: ACM publist_id: '3799' quality_controlled: '1' scopus_import: 1 status: public title: Finite automata with time delay blocks type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '2942' abstract: - lang: eng text: Interface theories provide a formal framework for component-based development of software and hardware which supports the incremental design of systems and the independent implementability of components. These capabilities are ensured through mathematical properties of the parallel composition operator and the refinement relation for components. More recently, a conjunction operation was added to interface theories in order to provide support for handling multiple viewpoints, requirements engineering, and component reuse. Unfortunately, the conjunction operator does not allow independent implementability in general. In this paper, we study conditions that need to be imposed on interface models in order to enforce independent implementability with respect to conjunction. We focus on multiple viewpoint specifications and propose a new compatibility criterion between two interfaces, which we call orthogonality. We show that orthogonal interfaces can be refined separately, while preserving both orthogonality and composability with other interfaces. We illustrate the independent implementability of different viewpoints with a FIFO buffer example. acknowledgement: ERC Advanced Grant QUAREM (Quantitative Reactive Modeling), FWF National Research Network RISE (Rigorous Systems Engineering) alternative_title: - LNCS author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic citation: ama: 'Henzinger TA, Nickovic D. Independent implementability of viewpoints. In: Conference Proceedings Monterey Workshop 2012. Vol 7539. Springer; 2012:380-395. doi:10.1007/978-3-642-34059-8_20' apa: 'Henzinger, T. A., & Nickovic, D. (2012). Independent implementability of viewpoints. In Conference proceedings Monterey Workshop 2012 (Vol. 7539, pp. 380–395). Oxford, UK: Springer. https://doi.org/10.1007/978-3-642-34059-8_20' chicago: Henzinger, Thomas A, and Dejan Nickovic. “Independent Implementability of Viewpoints.” In Conference Proceedings Monterey Workshop 2012, 7539:380–95. Springer, 2012. https://doi.org/10.1007/978-3-642-34059-8_20. ieee: T. A. Henzinger and D. Nickovic, “Independent implementability of viewpoints,” in Conference proceedings Monterey Workshop 2012, Oxford, UK, 2012, vol. 7539, pp. 380–395. ista: Henzinger TA, Nickovic D. 2012. Independent implementability of viewpoints. Conference proceedings Monterey Workshop 2012. Monterey Workshop 2012, LNCS, vol. 7539, 380–395. mla: Henzinger, Thomas A., and Dejan Nickovic. “Independent Implementability of Viewpoints.” Conference Proceedings Monterey Workshop 2012, vol. 7539, Springer, 2012, pp. 380–95, doi:10.1007/978-3-642-34059-8_20. short: T.A. Henzinger, D. Nickovic, in:, Conference Proceedings Monterey Workshop 2012, Springer, 2012, pp. 380–395. conference: end_date: 2012-03-21 location: Oxford, UK name: Monterey Workshop 2012 start_date: 2012-03-19 date_created: 2018-12-11T12:00:28Z date_published: 2012-09-16T00:00:00Z date_updated: 2021-01-12T07:39:56Z day: '16' department: - _id: ToHe doi: 10.1007/978-3-642-34059-8_20 ec_funded: 1 intvolume: ' 7539' language: - iso: eng month: '09' oa_version: None page: 380 - 395 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: ' Conference proceedings Monterey Workshop 2012' publication_status: published publisher: Springer publist_id: '3791' quality_controlled: '1' scopus_import: 1 status: public title: Independent implementability of viewpoints type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7539 year: '2012' ... --- _id: '3136' abstract: - lang: eng text: 'Continuous-time Markov chains (CTMC) with their rich theory and efficient simulation algorithms have been successfully used in modeling stochastic processes in diverse areas such as computer science, physics, and biology. However, systems that comprise non-instantaneous events cannot be accurately and efficiently modeled with CTMCs. In this paper we define delayed CTMCs, an extension of CTMCs that allows for the specification of a lower bound on the time interval between an event''s initiation and its completion, and we propose an algorithm for the computation of their behavior. Our algorithm effectively decomposes the computation into two stages: a pure CTMC governs event initiations while a deterministic process guarantees lower bounds on event completion times. Furthermore, from the nature of delayed CTMCs, we obtain a parallelized version of our algorithm. We use our formalism to model genetic regulatory circuits (biological systems where delayed events are common) and report on the results of our numerical algorithm as run on a cluster. We compare performance and accuracy of our results with results obtained by using pure CTMCs. © 2012 Springer-Verlag.' acknowledgement: This work was supported by the ERC Advanced Investigator grant on Quantitative Reactive Modeling (QUAREM) and by the Swiss National Science Foundation. alternative_title: - LNCS author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Maria full_name: Mateescu, Maria id: 3B43276C-F248-11E8-B48F-1D18A9856A87 last_name: Mateescu - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin citation: ama: 'Guet CC, Gupta A, Henzinger TA, Mateescu M, Sezgin A. Delayed continuous time Markov chains for genetic regulatory circuits. In: Vol 7358. Springer; 2012:294-309. doi:10.1007/978-3-642-31424-7_24' apa: 'Guet, C. C., Gupta, A., Henzinger, T. A., Mateescu, M., & Sezgin, A. (2012). Delayed continuous time Markov chains for genetic regulatory circuits (Vol. 7358, pp. 294–309). Presented at the CAV: Computer Aided Verification, Berkeley, CA, USA: Springer. https://doi.org/10.1007/978-3-642-31424-7_24' chicago: Guet, Calin C, Ashutosh Gupta, Thomas A Henzinger, Maria Mateescu, and Ali Sezgin. “Delayed Continuous Time Markov Chains for Genetic Regulatory Circuits,” 7358:294–309. Springer, 2012. https://doi.org/10.1007/978-3-642-31424-7_24. ieee: 'C. C. Guet, A. Gupta, T. A. Henzinger, M. Mateescu, and A. Sezgin, “Delayed continuous time Markov chains for genetic regulatory circuits,” presented at the CAV: Computer Aided Verification, Berkeley, CA, USA, 2012, vol. 7358, pp. 294–309.' ista: 'Guet CC, Gupta A, Henzinger TA, Mateescu M, Sezgin A. 2012. Delayed continuous time Markov chains for genetic regulatory circuits. CAV: Computer Aided Verification, LNCS, vol. 7358, 294–309.' mla: Guet, Calin C., et al. Delayed Continuous Time Markov Chains for Genetic Regulatory Circuits. Vol. 7358, Springer, 2012, pp. 294–309, doi:10.1007/978-3-642-31424-7_24. short: C.C. Guet, A. Gupta, T.A. Henzinger, M. Mateescu, A. Sezgin, in:, Springer, 2012, pp. 294–309. conference: end_date: 2012-07-13 location: Berkeley, CA, USA name: 'CAV: Computer Aided Verification' start_date: 2012-07-07 date_created: 2018-12-11T12:01:36Z date_published: 2012-07-01T00:00:00Z date_updated: 2021-01-12T07:41:18Z day: '01' department: - _id: CaGu - _id: ToHe doi: 10.1007/978-3-642-31424-7_24 ec_funded: 1 language: - iso: eng month: '07' oa_version: None page: 294 - 309 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication_status: published publisher: Springer publist_id: '3561' quality_controlled: '1' scopus_import: 1 status: public title: Delayed continuous time Markov chains for genetic regulatory circuits type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: '7358 ' year: '2012' ... --- _id: '3162' abstract: - lang: eng text: Given a dense-time real-valued signal and a parameterized temporal logic formula with both magnitude and timing parameters, we compute the subset of the parameter space that renders the formula satisfied by the trace. We provide two preliminary implementations, one which follows the exact semantics and attempts to compute the validity domain by quantifier elimination in linear arithmetics and one which conducts adaptive search in the parameter space. alternative_title: - LNCS article_processing_charge: No author: - first_name: Eugene full_name: Asarin, Eugene last_name: Asarin - first_name: Alexandre full_name: Donzé, Alexandre last_name: Donzé - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic citation: ama: 'Asarin E, Donzé A, Maler O, Nickovic D. Parametric identification of temporal properties. In: Vol 7186. Springer; 2012:147-160. doi:10.1007/978-3-642-29860-8_12' apa: 'Asarin, E., Donzé, A., Maler, O., & Nickovic, D. (2012). Parametric identification of temporal properties (Vol. 7186, pp. 147–160). Presented at the RV: Runtime Verification, San Francisco, CA, United States: Springer. https://doi.org/10.1007/978-3-642-29860-8_12' chicago: Asarin, Eugene, Alexandre Donzé, Oded Maler, and Dejan Nickovic. “Parametric Identification of Temporal Properties,” 7186:147–60. Springer, 2012. https://doi.org/10.1007/978-3-642-29860-8_12. ieee: 'E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification of temporal properties,” presented at the RV: Runtime Verification, San Francisco, CA, United States, 2012, vol. 7186, pp. 147–160.' ista: 'Asarin E, Donzé A, Maler O, Nickovic D. 2012. Parametric identification of temporal properties. RV: Runtime Verification, LNCS, vol. 7186, 147–160.' mla: Asarin, Eugene, et al. Parametric Identification of Temporal Properties. Vol. 7186, Springer, 2012, pp. 147–60, doi:10.1007/978-3-642-29860-8_12. short: E. Asarin, A. Donzé, O. Maler, D. Nickovic, in:, Springer, 2012, pp. 147–160. conference: end_date: 2011-09-30 location: San Francisco, CA, United States name: 'RV: Runtime Verification' start_date: 2011-09-27 date_created: 2018-12-11T12:01:45Z date_published: 2012-01-01T00:00:00Z date_updated: 2021-01-12T07:41:29Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-642-29860-8_12 file: - access_level: open_access checksum: ba4a75287008fc64b8fbf78a7476ec32 content_type: application/pdf creator: dernst date_created: 2020-05-15T12:50:15Z date_updated: 2020-07-14T12:46:01Z file_id: '7862' file_name: 2012_RV_Asarin.pdf file_size: 374726 relation: main_file file_date_updated: 2020-07-14T12:46:01Z has_accepted_license: '1' intvolume: ' 7186' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 147 - 160 publication_status: published publisher: Springer publist_id: '3525' quality_controlled: '1' scopus_import: 1 status: public title: Parametric identification of temporal properties type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7186 year: '2012' ... --- _id: '3253' abstract: - lang: eng text: We describe a framework for reasoning about programs with lists carrying integer numerical data. We use abstract domains to describe and manipulate complex constraints on configurations of these programs mixing constraints on the shape of the heap, sizes of the lists, on the multisets of data stored in these lists, and on the data at their different positions. Moreover, we provide powerful techniques for automatic validation of Hoare-triples and invariant checking, as well as for automatic synthesis of invariants and procedure summaries using modular inter-procedural analysis. The approach has been implemented in a tool called Celia and experimented successfully on a large benchmark of programs. acknowledgement: This work was partly supported by the French National Research Agency (ANR) project Veridyc (ANR-09-SEGI-016). alternative_title: - LNCS author: - first_name: Ahmed full_name: Bouajjani, Ahmed last_name: Bouajjani - first_name: Cezara full_name: Dragoi, Cezara id: 2B2B5ED0-F248-11E8-B48F-1D18A9856A87 last_name: Dragoi - first_name: Constantin full_name: Enea, Constantin last_name: Enea - first_name: Mihaela full_name: Sighireanu, Mihaela last_name: Sighireanu citation: ama: 'Bouajjani A, Dragoi C, Enea C, Sighireanu M. Abstract domains for automated reasoning about list manipulating programs with infinite data. In: Vol 7148. Springer; 2012:1-22. doi:10.1007/978-3-642-27940-9_1' apa: 'Bouajjani, A., Dragoi, C., Enea, C., & Sighireanu, M. (2012). Abstract domains for automated reasoning about list manipulating programs with infinite data (Vol. 7148, pp. 1–22). Presented at the VMCAI: Verification, Model Checking and Abstract Interpretation, Philadelphia, PA, USA: Springer. https://doi.org/10.1007/978-3-642-27940-9_1' chicago: Bouajjani, Ahmed, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. “Abstract Domains for Automated Reasoning about List Manipulating Programs with Infinite Data,” 7148:1–22. Springer, 2012. https://doi.org/10.1007/978-3-642-27940-9_1. ieee: 'A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu, “Abstract domains for automated reasoning about list manipulating programs with infinite data,” presented at the VMCAI: Verification, Model Checking and Abstract Interpretation, Philadelphia, PA, USA, 2012, vol. 7148, pp. 1–22.' ista: 'Bouajjani A, Dragoi C, Enea C, Sighireanu M. 2012. Abstract domains for automated reasoning about list manipulating programs with infinite data. VMCAI: Verification, Model Checking and Abstract Interpretation, LNCS, vol. 7148, 1–22.' mla: Bouajjani, Ahmed, et al. Abstract Domains for Automated Reasoning about List Manipulating Programs with Infinite Data. Vol. 7148, Springer, 2012, pp. 1–22, doi:10.1007/978-3-642-27940-9_1. short: A. Bouajjani, C. Dragoi, C. Enea, M. Sighireanu, in:, Springer, 2012, pp. 1–22. conference: end_date: 2012-01-24 location: Philadelphia, PA, USA name: 'VMCAI: Verification, Model Checking and Abstract Interpretation' start_date: 2012-01-22 date_created: 2018-12-11T12:02:17Z date_published: 2012-02-26T00:00:00Z date_updated: 2021-01-12T07:42:09Z day: '26' department: - _id: ToHe doi: 10.1007/978-3-642-27940-9_1 intvolume: ' 7148' language: - iso: eng month: '02' oa_version: None page: 1 - 22 publication_status: published publisher: Springer publist_id: '3404' quality_controlled: '1' status: public title: Abstract domains for automated reasoning about list manipulating programs with infinite data type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7148 year: '2012' ... --- _id: '3168' abstract: - lang: eng text: The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a mathematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the combinatorial complexity by quotienting the reachable set of molecular species into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently, we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper, we prove that this quotienting yields a sufficient condition for weak lumpability (that is to say that the quotient system is still Markovian for a given set of initial distributions) and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system (which means that the conditional probability of being in a given state in the original system knowing that we are in its equivalence class is an invariant of the system). We illustrate the framework on a case study of the epidermal growth factor (EGF)/insulin receptor crosstalk. acknowledgement: "We would like to thank the anonymous reviewers for their comments on the different versions of the paper. We would also like to thank Ferdinanda Camporesi for her careful reading and the useful insights that she gave us about the paper.\r\nJérôme Feret’s contribution was partially supported by the AbstractCell ANR-Chair of Excellence. Heinz Koeppl’s research is supported by the Swiss National Science Foundation, grant no. 200020-117975/1. Tatjana Petrov’s research is supported by SystemsX.ch (the Swiss Initiative in Systems Biology)." author: - first_name: Jérôme full_name: Feret, Jérôme last_name: Feret - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Heinz full_name: Koeppl, Heinz last_name: Koeppl - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 citation: ama: Feret J, Henzinger TA, Koeppl H, Petrov T. Lumpability abstractions of rule based systems. Theoretical Computer Science. 2012;431:137-164. doi:10.1016/j.tcs.2011.12.059 apa: Feret, J., Henzinger, T. A., Koeppl, H., & Petrov, T. (2012). Lumpability abstractions of rule based systems. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2011.12.059 chicago: Feret, Jérôme, Thomas A Henzinger, Heinz Koeppl, and Tatjana Petrov. “Lumpability Abstractions of Rule Based Systems.” Theoretical Computer Science. Elsevier, 2012. https://doi.org/10.1016/j.tcs.2011.12.059. ieee: J. Feret, T. A. Henzinger, H. Koeppl, and T. Petrov, “Lumpability abstractions of rule based systems,” Theoretical Computer Science, vol. 431. Elsevier, pp. 137–164, 2012. ista: Feret J, Henzinger TA, Koeppl H, Petrov T. 2012. Lumpability abstractions of rule based systems. Theoretical Computer Science. 431, 137–164. mla: Feret, Jérôme, et al. “Lumpability Abstractions of Rule Based Systems.” Theoretical Computer Science, vol. 431, Elsevier, 2012, pp. 137–64, doi:10.1016/j.tcs.2011.12.059. short: J. Feret, T.A. Henzinger, H. Koeppl, T. Petrov, Theoretical Computer Science 431 (2012) 137–164. date_created: 2018-12-11T12:01:47Z date_published: 2012-05-04T00:00:00Z date_updated: 2023-02-23T11:39:40Z day: '04' department: - _id: ToHe doi: 10.1016/j.tcs.2011.12.059 intvolume: ' 431' language: - iso: eng month: '05' oa_version: None page: 137 - 164 publication: Theoretical Computer Science publication_status: published publisher: Elsevier publist_id: '3515' pubrep_id: '73' quality_controlled: '1' related_material: record: - id: '3719' relation: earlier_version status: public scopus_import: 1 status: public title: Lumpability abstractions of rule based systems type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 431 year: '2012' ...