--- _id: '6985' abstract: - lang: eng text: In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets. article_number: '8851954' author: - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Felix full_name: Naser, Felix last_name: Naser - first_name: Radu full_name: Grosu, Radu last_name: Grosu - first_name: Daniela full_name: Rus, Daniela last_name: Rus citation: ama: 'Hasani R, Amini A, Lechner M, Naser F, Grosu R, Rus D. Response characterization for auditing cell dynamics in long short-term memory networks. In: Proceedings of the International Joint Conference on Neural Networks. IEEE; 2019. doi:10.1109/ijcnn.2019.8851954' apa: 'Hasani, R., Amini, A., Lechner, M., Naser, F., Grosu, R., & Rus, D. (2019). Response characterization for auditing cell dynamics in long short-term memory networks. In Proceedings of the International Joint Conference on Neural Networks. Budapest, Hungary: IEEE. https://doi.org/10.1109/ijcnn.2019.8851954' chicago: Hasani, Ramin, Alexander Amini, Mathias Lechner, Felix Naser, Radu Grosu, and Daniela Rus. “Response Characterization for Auditing Cell Dynamics in Long Short-Term Memory Networks.” In Proceedings of the International Joint Conference on Neural Networks. IEEE, 2019. https://doi.org/10.1109/ijcnn.2019.8851954. ieee: R. Hasani, A. Amini, M. Lechner, F. Naser, R. Grosu, and D. Rus, “Response characterization for auditing cell dynamics in long short-term memory networks,” in Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 2019. ista: 'Hasani R, Amini A, Lechner M, Naser F, Grosu R, Rus D. 2019. Response characterization for auditing cell dynamics in long short-term memory networks. Proceedings of the International Joint Conference on Neural Networks. IJCNN: International Joint Conference on Neural Networks, 8851954.' mla: Hasani, Ramin, et al. “Response Characterization for Auditing Cell Dynamics in Long Short-Term Memory Networks.” Proceedings of the International Joint Conference on Neural Networks, 8851954, IEEE, 2019, doi:10.1109/ijcnn.2019.8851954. short: R. Hasani, A. Amini, M. Lechner, F. Naser, R. Grosu, D. Rus, in:, Proceedings of the International Joint Conference on Neural Networks, IEEE, 2019. conference: end_date: 2019-07-19 location: Budapest, Hungary name: 'IJCNN: International Joint Conference on Neural Networks' start_date: 2019-07-14 date_created: 2019-11-04T15:59:58Z date_published: 2019-09-30T00:00:00Z date_updated: 2021-01-12T08:11:19Z day: '30' department: - _id: ToHe doi: 10.1109/ijcnn.2019.8851954 external_id: arxiv: - '1809.03864' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.03864 month: '09' oa: 1 oa_version: Preprint publication: Proceedings of the International Joint Conference on Neural Networks publication_identifier: isbn: - '9781728119854' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: 1 status: public title: Response characterization for auditing cell dynamics in long short-term memory networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7453' abstract: - lang: eng text: We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award). This research has received funding from the Sino-Danish Basic Research Centre, IDEA4CPS, funded by the Danish National Research Foundation and the National Science Foundation, China, the Innovation Fund Denmark centre DiCyPS, as well as the ERC Advanced Grant LASSO. alternative_title: - Lecture Notes in Computer Science article_processing_charge: No author: - first_name: Rajeev full_name: Alur, Rajeev last_name: Alur - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Kim G. full_name: Larsen, Kim G. last_name: Larsen - first_name: Marius full_name: Mikučionis, Marius last_name: Mikučionis citation: ama: 'Alur R, Giacobbe M, Henzinger TA, Larsen KG, Mikučionis M. Continuous-time models for system design and analysis. In: Steffen B, Woeginger G, eds. Computing and Software Science. Vol 10000. LNCS. Springer Nature; 2019:452-477. doi:10.1007/978-3-319-91908-9_22' apa: Alur, R., Giacobbe, M., Henzinger, T. A., Larsen, K. G., & Mikučionis, M. (2019). Continuous-time models for system design and analysis. In B. Steffen & G. Woeginger (Eds.), Computing and Software Science (Vol. 10000, pp. 452–477). Springer Nature. https://doi.org/10.1007/978-3-319-91908-9_22 chicago: Alur, Rajeev, Mirco Giacobbe, Thomas A Henzinger, Kim G. Larsen, and Marius Mikučionis. “Continuous-Time Models for System Design and Analysis.” In Computing and Software Science, edited by Bernhard Steffen and Gerhard Woeginger, 10000:452–77. LNCS. Springer Nature, 2019. https://doi.org/10.1007/978-3-319-91908-9_22. ieee: R. Alur, M. Giacobbe, T. A. Henzinger, K. G. Larsen, and M. Mikučionis, “Continuous-time models for system design and analysis,” in Computing and Software Science, vol. 10000, B. Steffen and G. Woeginger, Eds. Springer Nature, 2019, pp. 452–477. ista: 'Alur R, Giacobbe M, Henzinger TA, Larsen KG, Mikučionis M. 2019.Continuous-time models for system design and analysis. In: Computing and Software Science. Lecture Notes in Computer Science, vol. 10000, 452–477.' mla: Alur, Rajeev, et al. “Continuous-Time Models for System Design and Analysis.” Computing and Software Science, edited by Bernhard Steffen and Gerhard Woeginger, vol. 10000, Springer Nature, 2019, pp. 452–77, doi:10.1007/978-3-319-91908-9_22. short: R. Alur, M. Giacobbe, T.A. Henzinger, K.G. Larsen, M. Mikučionis, in:, B. Steffen, G. Woeginger (Eds.), Computing and Software Science, Springer Nature, 2019, pp. 452–477. date_created: 2020-02-05T10:51:44Z date_published: 2019-10-05T00:00:00Z date_updated: 2022-09-06T08:25:52Z day: '05' department: - _id: ToHe doi: 10.1007/978-3-319-91908-9_22 editor: - first_name: Bernhard full_name: Steffen, Bernhard last_name: Steffen - first_name: Gerhard full_name: Woeginger, Gerhard last_name: Woeginger intvolume: ' 10000' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/978-3-319-91908-9_22 month: '10' oa: 1 oa_version: Published Version page: 452-477 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Computing and Software Science publication_identifier: eisbn: - '9783319919089' eissn: - 0302-9743 isbn: - '9783319919072' issn: - 1611-3349 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: Continuous-time models for system design and analysis type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10000 year: '2019' ... --- _id: '7576' abstract: - lang: eng text: We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. They are applied to solve reachability analysis problems on four benchmark problems, one of them with hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. article_processing_charge: No author: - first_name: Fabian full_name: Immler, Fabian last_name: Immler - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Luis full_name: Benet, Luis last_name: Benet - first_name: Alexandre full_name: Chapoutot, Alexandre last_name: Chapoutot - first_name: Xin full_name: Chen, Xin last_name: Chen - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Luca full_name: Geretti, Luca last_name: Geretti - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: David P. full_name: Sanders, David P. last_name: Sanders - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Immler F, Althoff M, Benet L, et al. ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Series in Computing. Vol 61. EasyChair Publications; 2019:41-61. doi:10.29007/m75b' apa: 'Immler, F., Althoff, M., Benet, L., Chapoutot, A., Chen, X., Forets, M., … Schilling, C. (2019). ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics. In EPiC Series in Computing (Vol. 61, pp. 41–61). Montreal, Canada: EasyChair Publications. https://doi.org/10.29007/m75b' chicago: 'Immler, Fabian, Matthias Althoff, Luis Benet, Alexandre Chapoutot, Xin Chen, Marcelo Forets, Luca Geretti, Niklas Kochdumper, David P. Sanders, and Christian Schilling. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” In EPiC Series in Computing, 61:41–61. EasyChair Publications, 2019. https://doi.org/10.29007/m75b.' ieee: 'F. Immler et al., “ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics,” in EPiC Series in Computing, Montreal, Canada, 2019, vol. 61, pp. 41–61.' ista: 'Immler F, Althoff M, Benet L, Chapoutot A, Chen X, Forets M, Geretti L, Kochdumper N, Sanders DP, Schilling C. 2019. ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 61, 41–61.' mla: 'Immler, Fabian, et al. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” EPiC Series in Computing, vol. 61, EasyChair Publications, 2019, pp. 41–61, doi:10.29007/m75b.' short: F. Immler, M. Althoff, L. Benet, A. Chapoutot, X. Chen, M. Forets, L. Geretti, N. Kochdumper, D.P. Sanders, C. Schilling, in:, EPiC Series in Computing, EasyChair Publications, 2019, pp. 41–61. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2020-03-08T23:00:49Z date_published: 2019-05-25T00:00:00Z date_updated: 2021-01-12T08:14:17Z day: '25' ddc: - '000' department: - _id: ToHe doi: 10.29007/m75b file: - access_level: open_access checksum: 9138977a06fcd6a95976eb4bca875f0c content_type: application/pdf creator: dernst date_created: 2020-03-24T07:36:36Z date_updated: 2020-07-14T12:48:00Z file_id: '7617' file_name: 2019_ARCH19_Immler.pdf file_size: 1934830 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 61' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 41-61 publication: EPiC Series in Computing publication_identifier: eissn: - '23987340' publication_status: published publisher: EasyChair Publications quality_controlled: '1' scopus_import: 1 status: public title: 'ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '8570' abstract: - lang: eng text: 'This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In its third edition, seven tools have been applied to solve six different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, CORA/SX, HyDRA, Hylaa, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp citation: ama: 'Althoff M, Bak S, Forets M, et al. ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. In: EPiC Series in Computing. Vol 61. EasyChair; 2019:14-40. doi:10.29007/bj1w' apa: 'Althoff, M., Bak, S., Forets, M., Frehse, G., Kochdumper, N., Ray, R., … Schupp, S. (2019). ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. In EPiC Series in Computing (Vol. 61, pp. 14–40). Montreal, Canada: EasyChair. https://doi.org/10.29007/bj1w' chicago: 'Althoff, Matthias, Stanley Bak, Marcelo Forets, Goran Frehse, Niklas Kochdumper, Rajarshi Ray, Christian Schilling, and Stefan Schupp. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics.” In EPiC Series in Computing, 61:14–40. EasyChair, 2019. https://doi.org/10.29007/bj1w.' ieee: 'M. Althoff et al., “ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics,” in EPiC Series in Computing, Montreal, Canada, 2019, vol. 61, pp. 14–40.' ista: 'Althoff M, Bak S, Forets M, Frehse G, Kochdumper N, Ray R, Schilling C, Schupp S. 2019. ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 61, 14–40.' mla: 'Althoff, Matthias, et al. “ARCH-COMP19 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics.” EPiC Series in Computing, vol. 61, EasyChair, 2019, pp. 14–40, doi:10.29007/bj1w.' short: M. Althoff, S. Bak, M. Forets, G. Frehse, N. Kochdumper, R. Ray, C. Schilling, S. Schupp, in:, EPiC Series in Computing, EasyChair, 2019, pp. 14–40. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2020-09-26T14:23:54Z date_published: 2019-05-25T00:00:00Z date_updated: 2021-01-12T08:20:05Z day: '25' department: - _id: ToHe doi: 10.29007/bj1w intvolume: ' 61' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/open/1gbP month: '05' oa: 1 oa_version: Published Version page: 14-40 publication: EPiC Series in Computing publication_identifier: eissn: - '23987340' publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '6884' abstract: - lang: eng text: 'In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the "bank" rather than the other player. Taxman bidding spans the spectrum between Richman and poorman bidding. They are parameterized by a constant tau in [0,1]: portion tau of the winning bid is paid to the other player, and portion 1-tau to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games. It was previously shown that both Richman and poorman infinite-duration games with qualitative objectives reduce to reachability games, and we show a similar result here. Our most interesting results concern quantitative taxman games, namely mean-payoff games, where poorman and Richman bidding differ significantly. A central quantity in these games is the ratio between the two players'' initial budgets. While in poorman mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding, the payoff depends only on the structure of the game. In both games the optimal payoffs can be found using (different) probabilistic connections with random-turn games in which in each turn, instead of bidding, a coin is tossed to determine which player moves. While the value with Richman bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff taxman games that is based on a probabilistic connection: the value of a taxman bidding game with parameter tau and initial ratio r, equals the value of a random-turn game that uses a coin with bias F(tau, r) = (r+tau * (1-r))/(1+tau). Thus, we show that Richman bidding is the exception; namely, for every tau <1, the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the previous proof techniques for both Richman and poorman bidding. ' alternative_title: - LIPIcs article_number: '11' author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Avni G, Henzinger TA, Zikelic D. Bidding mechanisms in graph games. In: Vol 138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.MFCS.2019.11' apa: 'Avni, G., Henzinger, T. A., & Zikelic, D. (2019). Bidding mechanisms in graph games (Vol. 138). Presented at the MFCS: nternational Symposium on Mathematical Foundations of Computer Science, Aachen, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.MFCS.2019.11' chicago: Avni, Guy, Thomas A Henzinger, and Dorde Zikelic. “Bidding Mechanisms in Graph Games,” Vol. 138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.MFCS.2019.11. ieee: 'G. Avni, T. A. Henzinger, and D. Zikelic, “Bidding mechanisms in graph games,” presented at the MFCS: nternational Symposium on Mathematical Foundations of Computer Science, Aachen, Germany, 2019, vol. 138.' ista: 'Avni G, Henzinger TA, Zikelic D. 2019. Bidding mechanisms in graph games. MFCS: nternational Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 138, 11.' mla: Avni, Guy, et al. Bidding Mechanisms in Graph Games. Vol. 138, 11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.MFCS.2019.11. short: G. Avni, T.A. Henzinger, D. Zikelic, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Aachen, Germany name: 'MFCS: nternational Symposium on Mathematical Foundations of Computer Science' start_date: 2019-08-26 date_created: 2019-09-18T08:04:26Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-07T14:08:34Z day: '01' ddc: - '004' department: - _id: ToHe - _id: KrCh doi: 10.4230/LIPICS.MFCS.2019.11 ec_funded: 1 external_id: arxiv: - '1905.03835' file: - access_level: open_access checksum: 6346e116a4f4ed1414174d96d2c4fbd7 content_type: application/pdf creator: kschuh date_created: 2019-09-27T11:45:15Z date_updated: 2020-07-14T12:47:42Z file_id: '6913' file_name: 2019_LIPIcs_Avni.pdf file_size: 554457 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 138' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' related_material: record: - id: '9239' relation: later_version status: public scopus_import: 1 status: public title: Bidding mechanisms in graph games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 138 year: '2019' ... --- _id: '6042' abstract: - lang: eng text: Static program analyzers are increasingly effective in checking correctness properties of programs and reporting any errors found, often in the form of error traces. However, developers still spend a significant amount of time on debugging. This involves processing long error traces in an effort to localize a bug to a relatively small part of the program and to identify its cause. In this paper, we present a technique for automated fault localization that, given a program and an error trace, efficiently narrows down the cause of the error to a few statements. These statements are then ranked in terms of their suspiciousness. Our technique relies only on the semantics of the given program and does not require any test cases or user guidance. In experiments on a set of C benchmarks, we show that our technique is effective in quickly isolating the cause of error while out-performing other state-of-the-art fault-localization techniques. alternative_title: - LNCS article_processing_charge: No author: - first_name: Maria full_name: Christakis, Maria last_name: Christakis - first_name: Matthias full_name: Heizmann, Matthias last_name: Heizmann - first_name: Muhammad Numair full_name: Mansur, Muhammad Numair last_name: Mansur - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Valentin full_name: Wüstholz, Valentin last_name: Wüstholz citation: ama: 'Christakis M, Heizmann M, Mansur MN, Schilling C, Wüstholz V. Semantic fault localization and suspiciousness ranking. In: 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems . Vol 11427. Springer Nature; 2019:226-243. doi:10.1007/978-3-030-17462-0_13' apa: 'Christakis, M., Heizmann, M., Mansur, M. N., Schilling, C., & Wüstholz, V. (2019). Semantic fault localization and suspiciousness ranking. In 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Vol. 11427, pp. 226–243). Prague, Czech Republic: Springer Nature. https://doi.org/10.1007/978-3-030-17462-0_13' chicago: Christakis, Maria, Matthias Heizmann, Muhammad Numair Mansur, Christian Schilling, and Valentin Wüstholz. “Semantic Fault Localization and Suspiciousness Ranking.” In 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems , 11427:226–43. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-17462-0_13. ieee: M. Christakis, M. Heizmann, M. N. Mansur, C. Schilling, and V. Wüstholz, “Semantic fault localization and suspiciousness ranking,” in 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems , Prague, Czech Republic, 2019, vol. 11427, pp. 226–243. ista: 'Christakis M, Heizmann M, Mansur MN, Schilling C, Wüstholz V. 2019. Semantic fault localization and suspiciousness ranking. 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems . TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 11427, 226–243.' mla: Christakis, Maria, et al. “Semantic Fault Localization and Suspiciousness Ranking.” 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems , vol. 11427, Springer Nature, 2019, pp. 226–43, doi:10.1007/978-3-030-17462-0_13. short: M. Christakis, M. Heizmann, M.N. Mansur, C. Schilling, V. Wüstholz, in:, 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems , Springer Nature, 2019, pp. 226–243. conference: end_date: 2019-04-11 location: Prague, Czech Republic name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2019-04-06 date_created: 2019-02-18T16:44:06Z date_published: 2019-04-04T00:00:00Z date_updated: 2023-08-24T14:47:45Z day: '04' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-17462-0_13 ec_funded: 1 external_id: isi: - '000681166500013' file: - access_level: open_access checksum: 9998496f6fe202c0a19124b4209154c6 content_type: application/pdf creator: dernst date_created: 2019-05-10T14:16:05Z date_updated: 2020-07-14T12:47:17Z file_id: '6408' file_name: 2019_LNCS_Christakis.pdf file_size: 773083 relation: main_file file_date_updated: 2020-07-14T12:47:17Z has_accepted_license: '1' intvolume: ' 11427' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 226-243 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: '25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems ' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Semantic fault localization and suspiciousness ranking tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11427 year: '2019' ... --- _id: '6035' abstract: - lang: eng text: 'We present JuliaReach, a toolbox for set-based reachability analysis of dynamical systems. JuliaReach consists of two main packages: Reachability, containing implementations of reachability algorithms for continuous and hybrid systems, and LazySets, a standalone library that implements state-of-the-art algorithms for calculus with convex sets. The library offers both concrete and lazy set representations, where the latter stands for the ability to delay set computations until they are needed. The choice of the programming language Julia and the accompanying documentation of our toolbox allow researchers to easily translate set-based algorithms from mathematics to software in a platform-independent way, while achieving runtime performance that is comparable to statically compiled languages. Combining lazy operations in high dimensions and explicit computations in low dimensions, JuliaReach can be applied to solve complex, large-scale problems.' article_processing_charge: No author: - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Kostiantyn full_name: Potomkin, Kostiantyn last_name: Potomkin - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. JuliaReach: A toolbox for set-based reachability. In: Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control. Vol 22. ACM; 2019:39-44. doi:10.1145/3302504.3311804' apa: 'Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2019). JuliaReach: A toolbox for set-based reachability. In Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control (Vol. 22, pp. 39–44). Montreal, QC, Canada: ACM. https://doi.org/10.1145/3302504.3311804' chicago: 'Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. “JuliaReach: A Toolbox for Set-Based Reachability.” In Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control, 22:39–44. ACM, 2019. https://doi.org/10.1145/3302504.3311804.' ieee: 'S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “JuliaReach: A toolbox for set-based reachability,” in Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control, Montreal, QC, Canada, 2019, vol. 22, pp. 39–44.' ista: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. 2019. JuliaReach: A toolbox for set-based reachability. Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control. HSCC: Hybrid Systems Computation and Control vol. 22, 39–44.' mla: 'Bogomolov, Sergiy, et al. “JuliaReach: A Toolbox for Set-Based Reachability.” Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control, vol. 22, ACM, 2019, pp. 39–44, doi:10.1145/3302504.3311804.' short: 'S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, in:, Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control, ACM, 2019, pp. 39–44.' conference: end_date: 2019-04-18 location: Montreal, QC, Canada name: 'HSCC: Hybrid Systems Computation and Control' start_date: 2019-04-16 date_created: 2019-02-18T14:43:28Z date_published: 2019-04-16T00:00:00Z date_updated: 2023-08-24T14:47:21Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1145/3302504.3311804 ec_funded: 1 external_id: arxiv: - '1901.10736' isi: - '000516713900005' file: - access_level: open_access checksum: 28ed56439aea5991c3122d4730fd828f content_type: application/pdf creator: cschilli date_created: 2019-03-05T09:27:18Z date_updated: 2020-07-14T12:47:17Z file_id: '6067' file_name: hscc19.pdf file_size: 3784414 relation: main_file file_date_updated: 2020-07-14T12:47:17Z has_accepted_license: '1' intvolume: ' 22' isi: 1 keyword: - reachability analysis - hybrid systems - lazy computation language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 39-44 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control' publication_identifier: isbn: - '9781450362825' publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: 'JuliaReach: A toolbox for set-based reachability' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2019' ... --- _id: '6428' abstract: - lang: eng text: 'Safety and security are major concerns in the development of Cyber-Physical Systems (CPS). Signal temporal logic (STL) was proposedas a language to specify and monitor the correctness of CPS relativeto formalized requirements. Incorporating STL into a developmentprocess enables designers to automatically monitor and diagnosetraces, compute robustness estimates based on requirements, andperform requirement falsification, leading to productivity gains inverification and validation activities; however, in its current formSTL is agnostic to the input/output classification of signals, andthis negatively impacts the relevance of the analysis results.In this paper we propose to make the interface explicit in theSTL language by introducing input/output signal declarations. Wethen define new measures of input vacuity and output robustnessthat better reflect the nature of the system and the specification in-tent. The resulting framework, which we call interface-aware signaltemporal logic (IA-STL), aids verification and validation activities.We demonstrate the benefits of IA-STL on several CPS analysisactivities: (1) robustness-driven sensitivity analysis, (2) falsificationand (3) fault localization. We describe an implementation of our en-hancement to STL and associated notions of robustness and vacuityin a prototype extension of Breach, a MATLAB®/Simulink®toolboxfor CPS verification and validation. We explore these methodologi-cal improvements and evaluate our results on two examples fromthe automotive domain: a benchmark powertrain control systemand a hydrogen fuel cell system.' article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Alexandre full_name: Donzé, Alexandre last_name: Donzé - first_name: Hisahiro full_name: Ito, Hisahiro last_name: Ito - first_name: James full_name: Kapinski, James last_name: Kapinski citation: ama: 'Ferrere T, Nickovic D, Donzé A, Ito H, Kapinski J. Interface-aware signal temporal logic. In: Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control. ACM; 2019:57-66. doi:10.1145/3302504.3311800' apa: 'Ferrere, T., Nickovic, D., Donzé, A., Ito, H., & Kapinski, J. (2019). Interface-aware signal temporal logic. In Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control (pp. 57–66). Montreal, Canada: ACM. https://doi.org/10.1145/3302504.3311800' chicago: 'Ferrere, Thomas, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James Kapinski. “Interface-Aware Signal Temporal Logic.” In Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control, 57–66. ACM, 2019. https://doi.org/10.1145/3302504.3311800.' ieee: 'T. Ferrere, D. Nickovic, A. Donzé, H. Ito, and J. Kapinski, “Interface-aware signal temporal logic,” in Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control, Montreal, Canada, 2019, pp. 57–66.' ista: 'Ferrere T, Nickovic D, Donzé A, Ito H, Kapinski J. 2019. Interface-aware signal temporal logic. Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control. HSCC: Hybrid Systems Computation and Control, 57–66.' mla: 'Ferrere, Thomas, et al. “Interface-Aware Signal Temporal Logic.” Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control, ACM, 2019, pp. 57–66, doi:10.1145/3302504.3311800.' short: 'T. Ferrere, D. Nickovic, A. Donzé, H. Ito, J. Kapinski, in:, Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control, ACM, 2019, pp. 57–66.' conference: end_date: 2019-04-18 location: Montreal, Canada name: 'HSCC: Hybrid Systems Computation and Control' start_date: 2019-04-16 date_created: 2019-05-13T08:13:46Z date_published: 2019-04-16T00:00:00Z date_updated: 2023-08-25T10:19:23Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1145/3302504.3311800 external_id: isi: - '000516713900007' file: - access_level: open_access checksum: b8e967081e051d1c55ca5d18fb187890 content_type: application/pdf creator: dernst date_created: 2020-10-08T17:25:45Z date_updated: 2020-10-08T17:25:45Z file_id: '8633' file_name: 2019_ACM_Ferrere.pdf file_size: 1055421 relation: main_file success: 1 file_date_updated: 2020-10-08T17:25:45Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 57-66 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 'Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control' publication_identifier: isbn: - '9781450362825' publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Interface-aware signal temporal logic type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '6462' abstract: - lang: eng text: A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles. alternative_title: - LNCS article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Bettina full_name: Konighofer, Bettina last_name: Konighofer - first_name: Stefan full_name: Pranger, Stefan last_name: Pranger citation: ama: 'Avni G, Bloem R, Chatterjee K, Henzinger TA, Konighofer B, Pranger S. Run-time optimization for learned controllers through quantitative games. In: 31st International Conference on Computer-Aided Verification. Vol 11561. Springer; 2019:630-649. doi:10.1007/978-3-030-25540-4_36' apa: 'Avni, G., Bloem, R., Chatterjee, K., Henzinger, T. A., Konighofer, B., & Pranger, S. (2019). Run-time optimization for learned controllers through quantitative games. In 31st International Conference on Computer-Aided Verification (Vol. 11561, pp. 630–649). New York, NY, United States: Springer. https://doi.org/10.1007/978-3-030-25540-4_36' chicago: Avni, Guy, Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, Bettina Konighofer, and Stefan Pranger. “Run-Time Optimization for Learned Controllers through Quantitative Games.” In 31st International Conference on Computer-Aided Verification, 11561:630–49. Springer, 2019. https://doi.org/10.1007/978-3-030-25540-4_36. ieee: G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Konighofer, and S. Pranger, “Run-time optimization for learned controllers through quantitative games,” in 31st International Conference on Computer-Aided Verification, New York, NY, United States, 2019, vol. 11561, pp. 630–649. ista: 'Avni G, Bloem R, Chatterjee K, Henzinger TA, Konighofer B, Pranger S. 2019. Run-time optimization for learned controllers through quantitative games. 31st International Conference on Computer-Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 11561, 630–649.' mla: Avni, Guy, et al. “Run-Time Optimization for Learned Controllers through Quantitative Games.” 31st International Conference on Computer-Aided Verification, vol. 11561, Springer, 2019, pp. 630–49, doi:10.1007/978-3-030-25540-4_36. short: G. Avni, R. Bloem, K. Chatterjee, T.A. Henzinger, B. Konighofer, S. Pranger, in:, 31st International Conference on Computer-Aided Verification, Springer, 2019, pp. 630–649. conference: end_date: 2019-07-18 location: New York, NY, United States name: 'CAV: Computer Aided Verification' start_date: 2019-07-13 date_created: 2019-05-16T11:22:30Z date_published: 2019-07-12T00:00:00Z date_updated: 2023-08-25T10:33:27Z day: '12' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.1007/978-3-030-25540-4_36 external_id: isi: - '000491468000036' file: - access_level: open_access checksum: c231579f2485c6fd4df17c9443a4d80b content_type: application/pdf creator: dernst date_created: 2019-08-14T09:35:24Z date_updated: 2020-07-14T12:47:31Z file_id: '6816' file_name: 2019_CAV_Avni.pdf file_size: 659766 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' intvolume: ' 11561' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 630-649 project: - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: 31st International Conference on Computer-Aided Verification publication_identifier: isbn: - '9783030255398' issn: - 0302-9743 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Run-time optimization for learned controllers through quantitative games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11561 year: '2019' ... --- _id: '6493' abstract: - lang: eng text: We present two algorithmic approaches for synthesizing linear hybrid automata from experimental data. Unlike previous approaches, our algorithms work without a template and generate an automaton with nondeterministic guards and invariants, and with an arbitrary number and topology of modes. They thus construct a succinct model from the data and provide formal guarantees. In particular, (1) the generated automaton can reproduce the data up to a specified tolerance and (2) the automaton is tight, given the first guarantee. Our first approach encodes the synthesis problem as a logical formula in the theory of linear arithmetic, which can then be solved by an SMT solver. This approach minimizes the number of modes in the resulting model but is only feasible for limited data sets. To address scalability, we propose a second approach that does not enforce to find a minimal model. The algorithm constructs an initial automaton and then iteratively extends the automaton based on processing new data. Therefore the algorithm is well-suited for online and synthesis-in-the-loop applications. The core of the algorithm is a membership query that checks whether, within the specified tolerance, a given data set can result from the execution of a given automaton. We solve this membership problem for linear hybrid automata by repeated reachability computations. We demonstrate the effectiveness of the algorithm on synthetic data sets and on cardiac-cell measurements. alternative_title: - LNCS article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000−0003−2936−5719 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Luka full_name: Zeleznik, Luka id: 3ADCA2E4-F248-11E8-B48F-1D18A9856A87 last_name: Zeleznik citation: ama: 'Garcia Soto M, Henzinger TA, Schilling C, Zeleznik L. Membership-based synthesis of linear hybrid automata. In: 31st International Conference on Computer-Aided Verification. Vol 11561. Springer; 2019:297-314. doi:10.1007/978-3-030-25540-4_16' apa: 'Garcia Soto, M., Henzinger, T. A., Schilling, C., & Zeleznik, L. (2019). Membership-based synthesis of linear hybrid automata. In 31st International Conference on Computer-Aided Verification (Vol. 11561, pp. 297–314). New York City, NY, USA: Springer. https://doi.org/10.1007/978-3-030-25540-4_16' chicago: Garcia Soto, Miriam, Thomas A Henzinger, Christian Schilling, and Luka Zeleznik. “Membership-Based Synthesis of Linear Hybrid Automata.” In 31st International Conference on Computer-Aided Verification, 11561:297–314. Springer, 2019. https://doi.org/10.1007/978-3-030-25540-4_16. ieee: M. Garcia Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik, “Membership-based synthesis of linear hybrid automata,” in 31st International Conference on Computer-Aided Verification, New York City, NY, USA, 2019, vol. 11561, pp. 297–314. ista: 'Garcia Soto M, Henzinger TA, Schilling C, Zeleznik L. 2019. Membership-based synthesis of linear hybrid automata. 31st International Conference on Computer-Aided Verification. CAV: Computer-Aided Verification, LNCS, vol. 11561, 297–314.' mla: Garcia Soto, Miriam, et al. “Membership-Based Synthesis of Linear Hybrid Automata.” 31st International Conference on Computer-Aided Verification, vol. 11561, Springer, 2019, pp. 297–314, doi:10.1007/978-3-030-25540-4_16. short: M. Garcia Soto, T.A. Henzinger, C. Schilling, L. Zeleznik, in:, 31st International Conference on Computer-Aided Verification, Springer, 2019, pp. 297–314. conference: end_date: 2019-07-18 location: New York City, NY, USA name: 'CAV: Computer-Aided Verification' start_date: 2019-07-15 date_created: 2019-05-27T07:09:53Z date_published: 2019-07-12T00:00:00Z date_updated: 2023-08-25T10:40:41Z day: '12' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-25540-4_16 ec_funded: 1 external_id: isi: - '000491468000016' file: - access_level: open_access checksum: 1f1d61b83a151031745ef70a501da3d6 content_type: application/pdf creator: dernst date_created: 2019-08-14T11:05:30Z date_updated: 2020-07-14T12:47:32Z file_id: '6817' file_name: 2019_CAV_GarciaSoto.pdf file_size: 674795 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 11561' isi: 1 keyword: - Synthesis - Linear hybrid automaton - Membership language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 297-314 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Computer-Aided Verification publication_identifier: isbn: - '9783030255398' issn: - 0302-9743 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Membership-based synthesis of linear hybrid automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11561 year: '2019' ... --- _id: '6752' abstract: - lang: eng text: 'Two-player games on graphs are widely studied in formal methods, as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. The following bidding rule was previously defined and called Richman bidding. Both players have separate budgets, which sum up to 1. In each turn, a bidding takes place: Both players submit bids simultaneously, where a bid is legal if it does not exceed the available budget, and the higher bidder pays his bid to the other player and moves the token. The central question studied in bidding games is a necessary and sufficient initial budget for winning the game: a threshold budget in a vertex is a value t ∈ [0, 1] such that if Player 1’s budget exceeds t, he can win the game; and if Player 2’s budget exceeds 1 − t, he can win the game. Threshold budgets were previously shown to exist in every vertex of a reachability game, which have an interesting connection with random-turn games—a sub-class of simple stochastic games in which the player who moves is chosen randomly. We show the existence of threshold budgets for a qualitative class of infinite-duration games, namely parity games, and a quantitative class, namely mean-payoff games. The key component of the proof is a quantitative solution to strongly connected mean-payoff bidding games in which we extend the connection with random-turn games to these games, and construct explicit optimal strategies for both players.' article_number: '31' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Ventsislav K full_name: Chonev, Ventsislav K id: 36CBE2E6-F248-11E8-B48F-1D18A9856A87 last_name: Chonev citation: ama: Avni G, Henzinger TA, Chonev VK. Infinite-duration bidding games. Journal of the ACM. 2019;66(4). doi:10.1145/3340295 apa: Avni, G., Henzinger, T. A., & Chonev, V. K. (2019). Infinite-duration bidding games. Journal of the ACM. ACM. https://doi.org/10.1145/3340295 chicago: Avni, Guy, Thomas A Henzinger, and Ventsislav K Chonev. “Infinite-Duration Bidding Games.” Journal of the ACM. ACM, 2019. https://doi.org/10.1145/3340295. ieee: G. Avni, T. A. Henzinger, and V. K. Chonev, “Infinite-duration bidding games,” Journal of the ACM, vol. 66, no. 4. ACM, 2019. ista: Avni G, Henzinger TA, Chonev VK. 2019. Infinite-duration bidding games. Journal of the ACM. 66(4), 31. mla: Avni, Guy, et al. “Infinite-Duration Bidding Games.” Journal of the ACM, vol. 66, no. 4, 31, ACM, 2019, doi:10.1145/3340295. short: G. Avni, T.A. Henzinger, V.K. Chonev, Journal of the ACM 66 (2019). date_created: 2019-08-04T21:59:16Z date_published: 2019-07-16T00:00:00Z date_updated: 2023-08-29T07:02:13Z day: '16' department: - _id: ToHe doi: 10.1145/3340295 external_id: arxiv: - '1705.01433' isi: - '000487714900008' intvolume: ' 66' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.01433 month: '07' oa: 1 oa_version: Preprint project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication: Journal of the ACM publication_identifier: eissn: - 1557735X issn: - '00045411' publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '950' relation: earlier_version status: public scopus_import: '1' status: public title: Infinite-duration bidding games type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 66 year: '2019' ... --- _id: '7109' abstract: - lang: eng text: We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended. article_number: '19' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dejan full_name: Ničković, Dejan last_name: Ničković - first_name: Amir full_name: Pnueli, Amir last_name: Pnueli citation: ama: Ferrere T, Maler O, Ničković D, Pnueli A. From real-time logic to timed automata. Journal of the ACM. 2019;66(3). doi:10.1145/3286976 apa: Ferrere, T., Maler, O., Ničković, D., & Pnueli, A. (2019). From real-time logic to timed automata. Journal of the ACM. ACM. https://doi.org/10.1145/3286976 chicago: Ferrere, Thomas, Oded Maler, Dejan Ničković, and Amir Pnueli. “From Real-Time Logic to Timed Automata.” Journal of the ACM. ACM, 2019. https://doi.org/10.1145/3286976. ieee: T. Ferrere, O. Maler, D. Ničković, and A. Pnueli, “From real-time logic to timed automata,” Journal of the ACM, vol. 66, no. 3. ACM, 2019. ista: Ferrere T, Maler O, Ničković D, Pnueli A. 2019. From real-time logic to timed automata. Journal of the ACM. 66(3), 19. mla: Ferrere, Thomas, et al. “From Real-Time Logic to Timed Automata.” Journal of the ACM, vol. 66, no. 3, 19, ACM, 2019, doi:10.1145/3286976. short: T. Ferrere, O. Maler, D. Ničković, A. Pnueli, Journal of the ACM 66 (2019). date_created: 2019-11-26T10:22:32Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-09-06T11:11:56Z day: '01' department: - _id: ToHe doi: 10.1145/3286976 external_id: isi: - '000495406300005' intvolume: ' 66' isi: 1 issue: '3' language: - iso: eng month: '05' oa_version: None project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Journal of the ACM publication_identifier: issn: - 0004-5411 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: From real-time logic to timed automata type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 66 year: '2019' ... --- _id: '7147' abstract: - lang: eng text: "The expression of a gene is characterised by its transcription factors and the function processing them. If the transcription factors are not affected by gene products, the regulating function is often represented as a combinational logic circuit, where the outputs (product) are determined by current input values (transcription factors) only, and are hence independent on their relative arrival times. However, the simultaneous arrival of transcription factors (TFs) in genetic circuits is a strong assumption, given that the processes of transcription and translation of a gene into a protein introduce intrinsic time delays and that there is no global synchronisation among the arrival times of different molecular species at molecular targets.\r\n\r\nIn this paper, we construct an experimentally implementable genetic circuit with two inputs and a single output, such that, in presence of small delays in input arrival, the circuit exhibits qualitatively distinct observable phenotypes. In particular, these phenotypes are long lived transients: they all converge to a single value, but so slowly, that they seem stable for an extended time period, longer than typical experiment duration. We used rule-based language to prototype our circuit, and we implemented a search for finding the parameter combinations raising the phenotypes of interest.\r\n\r\nThe behaviour of our prototype circuit has wide implications. First, it suggests that GRNs can exploit event timing to create phenotypes. Second, it opens the possibility that GRNs are using event timing to react to stimuli and memorise events, without explicit feedback in regulation. From the modelling perspective, our prototype circuit demonstrates the critical importance of analysing the transient dynamics at the promoter binding sites of the DNA, before applying rapid equilibrium assumptions." alternative_title: - LNCS article_processing_charge: No author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin citation: ama: 'Guet CC, Henzinger TA, Igler C, Petrov T, Sezgin A. Transient memory in gene regulation. In: 17th International Conference on Computational Methods in Systems Biology. Vol 11773. Springer Nature; 2019:155-187. doi:10.1007/978-3-030-31304-3_9' apa: 'Guet, C. C., Henzinger, T. A., Igler, C., Petrov, T., & Sezgin, A. (2019). Transient memory in gene regulation. In 17th International Conference on Computational Methods in Systems Biology (Vol. 11773, pp. 155–187). Trieste, Italy: Springer Nature. https://doi.org/10.1007/978-3-030-31304-3_9' chicago: Guet, Calin C, Thomas A Henzinger, Claudia Igler, Tatjana Petrov, and Ali Sezgin. “Transient Memory in Gene Regulation.” In 17th International Conference on Computational Methods in Systems Biology, 11773:155–87. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-31304-3_9. ieee: C. C. Guet, T. A. Henzinger, C. Igler, T. Petrov, and A. Sezgin, “Transient memory in gene regulation,” in 17th International Conference on Computational Methods in Systems Biology, Trieste, Italy, 2019, vol. 11773, pp. 155–187. ista: 'Guet CC, Henzinger TA, Igler C, Petrov T, Sezgin A. 2019. Transient memory in gene regulation. 17th International Conference on Computational Methods in Systems Biology. CMSB: Computational Methods in Systems Biology, LNCS, vol. 11773, 155–187.' mla: Guet, Calin C., et al. “Transient Memory in Gene Regulation.” 17th International Conference on Computational Methods in Systems Biology, vol. 11773, Springer Nature, 2019, pp. 155–87, doi:10.1007/978-3-030-31304-3_9. short: C.C. Guet, T.A. Henzinger, C. Igler, T. Petrov, A. Sezgin, in:, 17th International Conference on Computational Methods in Systems Biology, Springer Nature, 2019, pp. 155–187. conference: end_date: 2019-09-20 location: Trieste, Italy name: 'CMSB: Computational Methods in Systems Biology' start_date: 2019-09-18 date_created: 2019-12-04T16:07:50Z date_published: 2019-09-17T00:00:00Z date_updated: 2023-09-06T11:18:08Z day: '17' department: - _id: CaGu - _id: ToHe doi: 10.1007/978-3-030-31304-3_9 external_id: isi: - '000557875100009' intvolume: ' 11773' isi: 1 language: - iso: eng month: '09' oa_version: None page: 155-187 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 251EE76E-B435-11E9-9278-68D0E5697425 grant_number: '24573' name: Design principles underlying genetic switch architecture publication: 17th International Conference on Computational Methods in Systems Biology publication_identifier: eissn: - 1611-3349 isbn: - '9783030313036' - '9783030313043' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Transient memory in gene regulation type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11773 year: '2019' ... --- _id: '7159' abstract: - lang: eng text: 'Cyber-physical systems (CPS) and the Internet-of-Things (IoT) result in a tremendous amount of generated, measured and recorded time-series data. Extracting temporal segments that encode patterns with useful information out of these huge amounts of data is an extremely difficult problem. We propose shape expressions as a declarative formalism for specifying, querying and extracting sophisticated temporal patterns from possibly noisy data. Shape expressions are regular expressions with arbitrary (linear, exponential, sinusoidal, etc.) shapes with parameters as atomic predicates and additional constraints on these parameters. We equip shape expressions with a novel noisy semantics that combines regular expression matching semantics with statistical regression. We characterize essential properties of the formalism and propose an efficient approximate shape expression matching procedure. We demonstrate the wide applicability of this technique on two case studies. ' alternative_title: - LNCS article_processing_charge: No author: - first_name: Dejan full_name: Ničković, Dejan last_name: Ničković - first_name: Xin full_name: Qin, Xin last_name: Qin - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Cristinel full_name: Mateis, Cristinel last_name: Mateis - first_name: Jyotirmoy full_name: Deshmukh, Jyotirmoy last_name: Deshmukh citation: ama: 'Ničković D, Qin X, Ferrere T, Mateis C, Deshmukh J. Shape expressions for specifying and extracting signal features. In: 19th International Conference on Runtime Verification. Vol 11757. Springer Nature; 2019:292-309. doi:10.1007/978-3-030-32079-9_17' apa: 'Ničković, D., Qin, X., Ferrere, T., Mateis, C., & Deshmukh, J. (2019). Shape expressions for specifying and extracting signal features. In 19th International Conference on Runtime Verification (Vol. 11757, pp. 292–309). Porto, Portugal: Springer Nature. https://doi.org/10.1007/978-3-030-32079-9_17' chicago: Ničković, Dejan, Xin Qin, Thomas Ferrere, Cristinel Mateis, and Jyotirmoy Deshmukh. “Shape Expressions for Specifying and Extracting Signal Features.” In 19th International Conference on Runtime Verification, 11757:292–309. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-32079-9_17. ieee: D. Ničković, X. Qin, T. Ferrere, C. Mateis, and J. Deshmukh, “Shape expressions for specifying and extracting signal features,” in 19th International Conference on Runtime Verification, Porto, Portugal, 2019, vol. 11757, pp. 292–309. ista: 'Ničković D, Qin X, Ferrere T, Mateis C, Deshmukh J. 2019. Shape expressions for specifying and extracting signal features. 19th International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 11757, 292–309.' mla: Ničković, Dejan, et al. “Shape Expressions for Specifying and Extracting Signal Features.” 19th International Conference on Runtime Verification, vol. 11757, Springer Nature, 2019, pp. 292–309, doi:10.1007/978-3-030-32079-9_17. short: D. Ničković, X. Qin, T. Ferrere, C. Mateis, J. Deshmukh, in:, 19th International Conference on Runtime Verification, Springer Nature, 2019, pp. 292–309. conference: end_date: 2019-10-11 location: Porto, Portugal name: 'RV: Runtime Verification' start_date: 2019-10-08 date_created: 2019-12-09T08:47:55Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-09-06T11:24:10Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-030-32079-9_17 external_id: isi: - '000570006300017' intvolume: ' 11757' isi: 1 language: - iso: eng month: '10' oa_version: None page: 292-309 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication: 19th International Conference on Runtime Verification publication_identifier: isbn: - '9783030320782' - '9783030320799' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Shape expressions for specifying and extracting signal features type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11757 year: '2019' ... --- _id: '7231' abstract: - lang: eng text: Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature. alternative_title: - LNCS article_processing_charge: No author: - first_name: Hui full_name: Kong, Hui id: 3BDE25AA-F248-11E8-B48F-1D18A9856A87 last_name: Kong orcid: 0000-0002-3066-6941 - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Yu full_name: Jiang, Yu last_name: Jiang - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:123-141. doi:10.1007/978-3-030-29662-9_8' apa: 'Kong, H., Bartocci, E., Jiang, Y., & Henzinger, T. A. (2019). Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 123–141). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_8' chicago: Kong, Hui, Ezio Bartocci, Yu Jiang, and Thomas A Henzinger. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:123–41. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_8. ieee: H. Kong, E. Bartocci, Y. Jiang, and T. A. Henzinger, “Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 123–141. ista: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. 2019. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS, vol. 11750, 123–141.' mla: Kong, Hui, et al. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 123–41, doi:10.1007/978-3-030-29662-9_8. short: H. Kong, E. Bartocci, Y. Jiang, T.A. Henzinger, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 123–141. conference: end_date: 2019-08-29 location: Amsterdam, The Netherlands name: 'FORMATS: Formal Modeling and Analysis of Timed Systems' start_date: 2019-08-27 date_created: 2020-01-05T23:00:47Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:55:15Z day: '13' department: - _id: ToHe doi: 10.1007/978-3-030-29662-9_8 external_id: arxiv: - '1907.11514' isi: - '000611677700008' intvolume: ' 11750' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11514 month: '08' oa: 1 oa_version: Preprint page: 123-141 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 17th International Conference on Formal Modeling and Analysis of Timed Systems publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9661-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11750 year: '2019' ... --- _id: '7232' abstract: - lang: eng text: 'We present Mixed-time Signal Temporal Logic (STL−MX), a specification formalism which extends STL by capturing the discrete/ continuous time duality found in many cyber-physical systems (CPS), as well as mixed-signal electronic designs. In STL−MX, properties of components with continuous dynamics are expressed in STL, while specifications of components with discrete dynamics are written in LTL. To combine the two layers, we evaluate formulas on two traces, discrete- and continuous-time, and introduce two interface operators that map signals, properties and their satisfaction signals across the two time domains. We show that STL-mx has the expressive power of STL supplemented with an implicit T-periodic clock signal. We develop and implement an algorithm for monitoring STL-mx formulas and illustrate the approach using a mixed-signal example. ' alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic citation: ama: 'Ferrere T, Maler O, Nickovic D. Mixed-time signal temporal logic. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:59-75. doi:10.1007/978-3-030-29662-9_4' apa: 'Ferrere, T., Maler, O., & Nickovic, D. (2019). Mixed-time signal temporal logic. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 59–75). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_4' chicago: Ferrere, Thomas, Oded Maler, and Dejan Nickovic. “Mixed-Time Signal Temporal Logic.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:59–75. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_4. ieee: T. Ferrere, O. Maler, and D. Nickovic, “Mixed-time signal temporal logic,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 59–75. ista: 'Ferrere T, Maler O, Nickovic D. 2019. Mixed-time signal temporal logic. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Anaysis of Timed Systems, LNCS, vol. 11750, 59–75.' mla: Ferrere, Thomas, et al. “Mixed-Time Signal Temporal Logic.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 59–75, doi:10.1007/978-3-030-29662-9_4. short: T. Ferrere, O. Maler, D. Nickovic, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 59–75. conference: end_date: 2019-08-29 location: Amsterdam, The Netherlands name: 'FORMATS: Formal Modeling and Anaysis of Timed Systems' start_date: 2019-08-27 date_created: 2020-01-05T23:00:48Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:57:17Z day: '13' department: - _id: ToHe doi: 10.1007/978-3-030-29662-9_4 external_id: isi: - '000611677700004' intvolume: ' 11750' isi: 1 language: - iso: eng month: '08' oa_version: None page: 59-75 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 17th International Conference on Formal Modeling and Analysis of Timed Systems publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9661-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mixed-time signal temporal logic type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11750 year: '2019' ... --- _id: '6894' abstract: - lang: eng text: "Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving.\r\nNevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions.\r\nWhile, previously, directions were given by the user, we introduce (1) the first method\r\nfor computing template directions from spurious counterexamples, so as to generalize and\r\neliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid\r\nautomata with (possibly non-linear) convex constraints on derivatives only, while for linear\r\nODE requires further abstraction. Specifically, we introduce (2) the conic abstractions,\r\nwhich, partitioning the state space into appropriate (possibly non-uniform) cones, divide\r\ncurvy trajectories into relatively straight sections, suitable for polyhedral abstractions.\r\nFinally, we introduce (3) space-time interpolation, which, combining interval arithmetic\r\nand template refinement, computes appropriate (possibly non-uniform) time partitioning\r\nand template directions along spurious trajectories, so as to eliminate them.\r\nWe obtain sound and automatic methods for the reachability analysis over dense\r\nand unbounded time of convex hybrid automata and hybrid automata with linear ODE.\r\nWe build prototype tools and compare—favorably—our methods against the respective\r\nstate-of-the-art tools, on several benchmarks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 citation: ama: Giacobbe M. Automatic time-unbounded reachability analysis of hybrid systems. 2019. doi:10.15479/AT:ISTA:6894 apa: Giacobbe, M. (2019). Automatic time-unbounded reachability analysis of hybrid systems. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6894 chicago: Giacobbe, Mirco. “Automatic Time-Unbounded Reachability Analysis of Hybrid Systems.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6894. ieee: M. Giacobbe, “Automatic time-unbounded reachability analysis of hybrid systems,” Institute of Science and Technology Austria, 2019. ista: Giacobbe M. 2019. Automatic time-unbounded reachability analysis of hybrid systems. Institute of Science and Technology Austria. mla: Giacobbe, Mirco. Automatic Time-Unbounded Reachability Analysis of Hybrid Systems. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6894. short: M. Giacobbe, Automatic Time-Unbounded Reachability Analysis of Hybrid Systems, Institute of Science and Technology Austria, 2019. date_created: 2019-09-22T14:08:44Z date_published: 2019-09-30T00:00:00Z date_updated: 2023-09-19T09:30:43Z day: '30' ddc: - '000' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:6894 file: - access_level: open_access checksum: 773beaf4a85dc2acc2c12b578fbe1965 content_type: application/pdf creator: mgiacobbe date_created: 2019-09-27T14:15:05Z date_updated: 2020-07-14T12:47:43Z file_id: '6916' file_name: giacobbe_thesis.pdf file_size: 4100685 relation: main_file - access_level: closed checksum: 97f1c3da71feefd27e6e625d32b4c75b content_type: application/gzip creator: mgiacobbe date_created: 2019-09-27T14:22:04Z date_updated: 2020-07-14T12:47:43Z file_id: '6917' file_name: giacobbe_thesis_src.tar.gz file_size: 7959732 relation: source_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '132' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '631' relation: part_of_dissertation status: public - id: '647' relation: part_of_dissertation status: public - id: '140' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 title: Automatic time-unbounded reachability analysis of hybrid systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '3300' abstract: - lang: eng text: "This book first explores the origins of this idea, grounded in theoretical work on temporal logic and automata. The editors and authors are among the world's leading researchers in this domain, and they contributed 32 chapters representing a thorough view of the development and application of the technique. Topics covered include binary decision diagrams, symbolic model checking, satisfiability modulo theories, partial-order reduction, abstraction, interpolation, concurrency, security protocols, games, probabilistic model checking, and process algebra, and chapters on the transfer of theory to industrial practice, property specification languages for hardware, and verification of real-time systems and hybrid systems.\r\n\r\nThe book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools." article_processing_charge: No author: - first_name: Edmund M. full_name: Clarke, Edmund M. last_name: Clarke - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Helmut full_name: Veith, Helmut last_name: Veith - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem citation: ama: 'Clarke EM, Henzinger TA, Veith H, Bloem R. Handbook of Model Checking. 1st ed. Cham: Springer Nature; 2018. doi:10.1007/978-3-319-10575-8' apa: 'Clarke, E. M., Henzinger, T. A., Veith, H., & Bloem, R. (2018). Handbook of Model Checking (1st ed.). Cham: Springer Nature. https://doi.org/10.1007/978-3-319-10575-8' chicago: 'Clarke, Edmund M., Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of Model Checking. 1st ed. Cham: Springer Nature, 2018. https://doi.org/10.1007/978-3-319-10575-8.' ieee: 'E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of Model Checking, 1st ed. Cham: Springer Nature, 2018.' ista: 'Clarke EM, Henzinger TA, Veith H, Bloem R. 2018. Handbook of Model Checking 1st ed., Cham: Springer Nature, XLVIII, 1212p.' mla: Clarke, Edmund M., et al. Handbook of Model Checking. 1st ed., Springer Nature, 2018, doi:10.1007/978-3-319-10575-8. short: E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem, Handbook of Model Checking, 1st ed., Springer Nature, Cham, 2018. date_created: 2018-12-11T12:02:32Z date_published: 2018-06-08T00:00:00Z date_updated: 2021-12-21T10:49:36Z day: '08' department: - _id: ToHe doi: 10.1007/978-3-319-10575-8 edition: '1' language: - iso: eng month: '06' oa_version: None page: XLVIII, 1212 place: Cham publication_identifier: eisbn: - 978-3-319-10575-8 isbn: - 978-3-319-10574-1 publication_status: published publisher: Springer Nature publist_id: '3340' quality_controlled: '1' scopus_import: '1' status: public title: Handbook of Model Checking type: book user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2018' ... --- _id: '60' abstract: - lang: eng text: Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. This chapter is an introduction and short survey of model checking. The chapter aims to motivate and link the individual chapters of the handbook, and to provide context for readers who are not familiar with model checking. author: - first_name: Edmund full_name: Clarke, Edmund last_name: Clarke - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Helmut full_name: Veith, Helmut last_name: Veith citation: ama: 'Clarke E, Henzinger TA, Veith H. Introduction to model checking. In: Henzinger TA, ed. Handbook of Model Checking. Handbook of Model Checking. Springer; 2018:1-26. doi:10.1007/978-3-319-10575-8_1' apa: Clarke, E., Henzinger, T. A., & Veith, H. (2018). Introduction to model checking. In T. A. Henzinger (Ed.), Handbook of Model Checking (pp. 1–26). Springer. https://doi.org/10.1007/978-3-319-10575-8_1 chicago: Clarke, Edmund, Thomas A Henzinger, and Helmut Veith. “Introduction to Model Checking.” In Handbook of Model Checking, edited by Thomas A Henzinger, 1–26. Handbook of Model Checking. Springer, 2018. https://doi.org/10.1007/978-3-319-10575-8_1. ieee: E. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in Handbook of Model Checking, T. A. Henzinger, Ed. Springer, 2018, pp. 1–26. ista: 'Clarke E, Henzinger TA, Veith H. 2018.Introduction to model checking. In: Handbook of Model Checking. , 1–26.' mla: Clarke, Edmund, et al. “Introduction to Model Checking.” Handbook of Model Checking, edited by Thomas A Henzinger, Springer, 2018, pp. 1–26, doi:10.1007/978-3-319-10575-8_1. short: E. Clarke, T.A. Henzinger, H. Veith, in:, T.A. Henzinger (Ed.), Handbook of Model Checking, Springer, 2018, pp. 1–26. date_created: 2018-12-11T11:44:25Z date_published: 2018-05-19T00:00:00Z date_updated: 2021-01-12T08:05:35Z day: '19' department: - _id: ToHe doi: 10.1007/978-3-319-10575-8_1 editor: - first_name: Thomas A full_name: Henzinger, Thomas A last_name: Henzinger language: - iso: eng month: '05' oa_version: None page: 1 - 26 publication: Handbook of Model Checking publication_status: published publisher: Springer publist_id: '7994' quality_controlled: '1' scopus_import: 1 series_title: Handbook of Model Checking status: public title: Introduction to model checking type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '86' abstract: - lang: eng text: Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition graphs, on Markov chains, and on game graphs. In all three cases, we give polynomial-time algorithms. acknowledgement: 'This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23, S11407-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), ERC Start grant (279307: Graph Games), Vienna Science and Technology Fund (WWTF) through project ICT15-003 and by the National Science Centre (NCN), Poland under grant 2014/15/D/ST6/04543.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Computing average response time. In: Lohstroh M, Derler P, Sirjani M, eds. Principles of Modeling. Vol 10760. Springer; 2018:143-161. doi:10.1007/978-3-319-95246-8_9' apa: Chatterjee, K., Henzinger, T. A., & Otop, J. (2018). Computing average response time. In M. Lohstroh, P. Derler, & M. Sirjani (Eds.), Principles of Modeling (Vol. 10760, pp. 143–161). Springer. https://doi.org/10.1007/978-3-319-95246-8_9 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Computing Average Response Time.” In Principles of Modeling, edited by Marten Lohstroh, Patricia Derler, and Marjan Sirjani, 10760:143–61. Springer, 2018. https://doi.org/10.1007/978-3-319-95246-8_9. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Computing average response time,” in Principles of Modeling, vol. 10760, M. Lohstroh, P. Derler, and M. Sirjani, Eds. Springer, 2018, pp. 143–161. ista: 'Chatterjee K, Henzinger TA, Otop J. 2018.Computing average response time. In: Principles of Modeling. LNCS, vol. 10760, 143–161.' mla: Chatterjee, Krishnendu, et al. “Computing Average Response Time.” Principles of Modeling, edited by Marten Lohstroh et al., vol. 10760, Springer, 2018, pp. 143–61, doi:10.1007/978-3-319-95246-8_9. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, M. Lohstroh, P. Derler, M. Sirjani (Eds.), Principles of Modeling, Springer, 2018, pp. 143–161. date_created: 2018-12-11T11:44:33Z date_published: 2018-07-20T00:00:00Z date_updated: 2021-01-12T08:20:14Z day: '20' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-319-95246-8_9 ec_funded: 1 editor: - first_name: Marten full_name: Lohstroh, Marten last_name: Lohstroh - first_name: Patricia full_name: Derler, Patricia last_name: Derler - first_name: Marjan full_name: Sirjani, Marjan last_name: Sirjani file: - access_level: open_access checksum: 9995c6ce6957333baf616fc4f20be597 content_type: application/pdf creator: dernst date_created: 2019-11-19T08:22:18Z date_updated: 2020-07-14T12:48:14Z file_id: '7053' file_name: 2018_PrinciplesModeling_Chatterjee.pdf file_size: 516307 relation: main_file file_date_updated: 2020-07-14T12:48:14Z has_accepted_license: '1' intvolume: ' 10760' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 143 - 161 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: Principles of Modeling publication_status: published publisher: Springer publist_id: '7968' quality_controlled: '1' scopus_import: 1 status: public title: Computing average response time type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10760 year: '2018' ...